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Introduction

Set of agents i ∈ [N ] and indivisible items t ∈ [T ] that arrive online.
Each agent has a valuation function vi : T → R≥0. For groups of items we
sum the valuations.

Given a partition T =
⊔

i Ti maximize:

NSW ({Ti}) =
(∏

i

vi(Ti)
)1/N

.

The offline problem is NP -complete and APX−hard (best factor 1.45).
For the divisible one are some tight online algorithms (with some extra
assumptions).
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What to expect?

We focus on Competitive ratio. Given an algorithm Alg,

CR = sup
I

NSWOpt(I)
NSWAlg(I)

where I is a valid input. Note that NSWAlg(I) can be the expected
value of the NSW if the algorithm is randomized.

Restricted scenarios.
Lower bounds on the CR and some algorithms (upper bounds).
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Strong LB

Definition (Random order)
We take all the permutations of some input and calculate the expected
NSW.

Theorem

For any (randomized) algorithm, the competitive ratio is at least eΘ(N),
even if the algorithm knows the total utility of agents beforehand and the
items arrive in random order.
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Sketch of the proof

For N = T = 3 consider:

Items
Agents 1 2 3

1 1 1 1
2 1 0 0
3 0 1 1

CR = 1
0·1/9+1·8/9 = 9/8. If we copy for 3n agents → (9/8)n.
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Equal valuations

Definition (Equal valuations setting)
We have ∀i, j ∈ [N ]vi = vj ≡ v.

Note: the offline version is at least NP -hard via Partition.
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Lower bound

Lemma

Let Mn = max
∏

ai s.t.
∑

i∈s ai = n for free s. If n = 3k + r:
1 Mn = 3k for r = 0
2 Mn = 4 · 3k−1 for r = 1
3 Mn = 2 · 3k for r = 2

Example
For n = 11 we have (3, 3, 3, 2).

Edgar Moreno Mart́ınez Maximizing NSW in Online Settings 27th April 2023 10 / 34



Lower bound

Theorem

Any deterministic algorithm is lower bounded by (Mn)1/n, which is at
most 31/3 ≈ 1.4422, that is also the limit when n → ∞ and the exact
value for all n = 3k.

Proof (sketch)
Consider an input with valuations (1, ..., 1︸ ︷︷ ︸

n

, ∞, ..., ∞︸ ︷︷ ︸
≈2n/3

). The optimal will be

(Mn∞2n/3)1/n Any deterministic algorithm will allocate first n items
evenly to avoid the input (1, ..., 1︸ ︷︷ ︸

n

).

Then it gets a value of ((1 + ∞)2n/3)1/n.
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Greedy and EF1

Algorithm 1: Greedy
1 Given any deterministic tie-breaking rule
2 Initialize X1, . . . , Xn = ∅
3 for t = 1, 2, . . . , T do
4 Item gt arrives ;
5 Find the least satisfied agent j = argmini∈[n] vi(Xi);
6 Xj = Xj ∪ {gt} ;
7 end

Definition (EF1)
For all agents i, j if t = argmaxf∈Ti

v(f), v(Ti\{t}) ≤ v(Tj).
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Greedy bounds

Lemma

Greedy algorithms maintains an allocation that is at most
e1/e-approximate. Note e1/e ≈ 1.4446

Proof
Follows from EF1 and a Barman et al. [2018] result.

Lemma

For all ϵ > 0 any algorithm that is maintains the EF1 property returns an
allocation that is at least (e1/e − ϵ)-approximate.
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Proof (sketch)
Similar to general lower bound. With p/q ≈ e we build input n = p and
valuations (1, ..., 1︸ ︷︷ ︸

pq

, ∞, ..., ∞︸ ︷︷ ︸
p−q

).

Optimal is
(pq∞p−q)1/p

EF1 gets
(qq(q + ∞)p−q)1/p

CR = pq/p

qq/p
≈ e1/e
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Randomized lower bound

Using similar ideas we can get:

Theorem

Any (possibly randomized) algorithm has a competitive ratio of at least
1.3692.

Recap:
Greedy CR 1.4446 (e1/e)
Deterministic LB 1.4422 (31/3)
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Small items

We have seen that the lower bounds use “infinite” items.

Theorem
If for all every item I we have v(I) ≤ fT where T is the sum of valuations
and f ∈ (0, 1

n) we have that the competitive ratio of the greedy algorithm
is at most (

√
1 − fn + nf/2)−1.

Proof (sketch)
Use the the EF1 property and some approximations.

Example
If f = 1/(2n) we get CR ≤ 1.044.
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Beating deterministic algorithms?

1 Pick D ∈ [n] following a given distribution {pi}i∈[n];
2 if D = n then
3 Run the regular greedy algorithm 1;
4 else
5 Maintain allocations Bi ∈ [D] and Si ∈ [n]\[D] such that

v(Bi) > v(Sj)∀i, j.
6 for t = 1, 2, . . . , T do
7 Item gt arrives ;
8 s =

∑
i∈[n]\[D] v(Si)

9 if v(gt) ≥ se/n then
10 Allocate item gt greedily in S;
11 else
12 Allocate item gt greedily in B;
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Affine utility setting

Generalizing the identical setting of the equal valuations section through
affine valuations.

Definition (Affine value)
Given a base utility function u(·) and constants ai > 0, bi ≥ 0, we define
an affine value setting to be the case in which agent i’s valuation function
vi of receiving an item t satisfies vi({t}) = aiu({t}) + bi.
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Theorems

Theorem

Any problem instance with parameters (ai, bi)i∈[n], can be reduced to a
problem instance with (1, b′

i)i∈[n].

Theorem

Any deterministic algorithm lacks from an arbitrarily large CR even if
n = 2.
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Approximation

If v = mint∈[T ] u({t}) and b = mini∈[n] bi.

B =

∏
i∈[n]

v + bi

v + b

1/n

(1)

Theorem

There exists an algorithm with a competitive ratio at most Be1/e.
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Binary and bivalue

Definition
Binary: vi(·) ∈ {0, 1}∀i ∈ [N ]
m-Bivalue: vi(·) ∈ {1, m}∀i ∈ [N ] for m > 1
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Binary with many items

Observation
The exponential lower bound of the first section used binary valuations.

Theorem

In the binary value setting, if every agent values positively at least n items
the greedy algorithm has a competitive ratio of at most Θ(n).

Lemma

If an agent positively values kn items the greedy algorithm allocates him
at least k items.
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The greedy is asymptotically optimal

Theorem

Any algorithm has a competitive ratio of at least Θ(n) even if every agent
values at least a given number of items (that can grow with n).

Proof (sketch)
Receive n rounds of items. On the first round the items are valued 1 by all
agents. In each round an agent pass to value items by 0. In each round
the number of received items is >> that in the previous one.
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m-Bivalue setting

Theorem
The round robin algorithm has at most a CR of m.

Theorem
The greedy algorithm has at least a CR of m(1 − 1/n) + 1/n.

Theorem

Any online algorithm has a competitive ratio of at least m5/18.
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Bipartite maximum matching

2

1

4

3

Left side agents, right side items. Edge if agent values m the item.
Inspired in the known lower bounds of this problem:

Theorem

Any random tie-breaker algorithm has a competitive ratio of at least
m1/2−ϵ for all ϵ > 0.
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Proof

L4

L3

L2

L1

R1

R2

R3

R4
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Conclusions

Focus on determining lower bounds for competitive ratio.
Positive results in some restricted scenarios.
Greedy algorithm performs well in equal valuations scenario.
Greedy algorithm is asymptotically tight in large number of items with
binary valuations.
No good positive result for m-bivalue setting.
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Future work

Finishing the started ideas: closing the deterministic gap in the equal
valuations setting, or proving a good randomized algorithm, or finding
a good algorithm for the m-bivalue setting.
Investigation of bounds and algorithms under the random order arrival
model would be particularly interesting.
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Questions?
edgarmm19@gmail.com
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