Maximizing Nash Social Welfare in Online Settings

Edgar Moreno Martínez

(Work with Max, Suho and Kiarash)

27th April 2023

(日) (四) (문) (문) (문)

Overview

Introduction

2 General lower bounds

3 Equal valuations setting

- Greedy and Lower bounds
- Small items
- A better randomized algorithm?

4 Affine valuations setting

- 5 Bivalued valuations setting
 - Binary with many of items
 - *m*-Bivalue setting

Conclusions

Set of agents $i \in [N]$ and **indivisible** items $t \in [T]$ that arrive **online**. Each agent has a valuation function $v_i : T \to \mathbb{R}^{\geq 0}$. For groups of items we sum the valuations. Set of agents $i \in [N]$ and **indivisible** items $t \in [T]$ that arrive **online**. Each agent has a valuation function $v_i : T \to \mathbb{R}^{\geq 0}$. For groups of items we sum the valuations.

Given a partition $T = \bigsqcup_i T_i$ maximize:

$$NSW(\{T_i\}) = \left(\prod_i v_i(T_i)\right)^{1/N}$$

Set of agents $i \in [N]$ and **indivisible** items $t \in [T]$ that arrive **online**. Each agent has a valuation function $v_i : T \to \mathbb{R}^{\geq 0}$. For groups of items we sum the valuations.

Given a partition $T = \bigsqcup_i T_i$ maximize:

$$NSW(\{T_i\}) = \left(\prod_i v_i(T_i)\right)^{1/N}.$$

The offline problem is NP-complete and APX-hard (best factor 1.45). For the divisible one are some tight online algorithms (with some extra assumptions).

We focus on Competitive ratio. Given an algorithm ALG,

$$CR = \sup_{\mathcal{I}} \frac{\mathrm{NSW}_{\mathrm{OPT}}(\mathcal{I})}{\mathrm{NSW}_{\mathrm{ALG}}(\mathcal{I})}$$

where \mathcal{I} is a valid input. Note that $NSW_{ALG}(\mathcal{I})$ can be the expected value of the NSW if the algorithm is randomized.

We focus on Competitive ratio. Given an algorithm ALG,

$$CR = \sup_{\mathcal{I}} \frac{\mathrm{NSW}_{\mathrm{OPT}}(\mathcal{I})}{\mathrm{NSW}_{\mathrm{ALG}}(\mathcal{I})}$$

where \mathcal{I} is a valid input. Note that $NSW_{ALG}(\mathcal{I})$ can be the expected value of the NSW if the algorithm is randomized.

- Restricted scenarios.
- Lower bounds on the CR and some algorithms (upper bounds).

Introduction

General lower bounds

Equal valuations setting

- Greedy and Lower bounds
- Small items
- A better randomized algorithm?

Affine valuations setting

Bivalued valuations setting
Binary with many of items
m-Bivalue setting

Conclusions

Definition (Random order)

We take all the permutations of some input and calculate the expected NSW.

Theorem

For any (randomized) algorithm, the competitive ratio is at least $e^{\Theta(N)}$, even if the algorithm knows the total utility of agents beforehand and the items arrive in random order.

For N = T = 3 consider:

Agents Items	1	2	3
1	1	1	1
2	1	0	0
3	0	1	1

 $CR = \frac{1}{0 \cdot 1/9 + 1 \cdot 8/9} = 9/8$. If we copy for 3n agents $\rightarrow (9/8)^n$.

- ∢ 🗗 ▶

< ∃ >

э

General lower bounds

3 Equal valuations setting

- Greedy and Lower bounds
- Small items
- A better randomized algorithm?

Affine valuations setting

Bivalued valuations setting
Binary with many of items
m-Bivalue setting

Conclusions

Definition (Equal valuations setting)

We have $\forall i, j \in [N] v_i = v_j \equiv v$.

Note: the offline version is at least NP-hard via Partition.

9/34

Lemma

Let
$$M_n = \max_{i \in s} \prod_{i \in s} a_i = n$$
 for free s. If $n = 3k + r$:

1
$$M_n = 3^k$$
 for $r = 0$

2
$$M_n = 4 \cdot 3^{k-1}$$
 for $r = 1$

()
$$M_n = 2 \cdot 3^k$$
 for $r = 2$

Example

For n = 11 we have (3, 3, 3, 2).

イロト イポト イヨト イヨト

æ

Any deterministic algorithm is lower bounded by $(M_n)^{1/n}$, which is at most $3^{1/3} \approx 1.4422$, that is also the limit when $n \to \infty$ and the exact value for all n = 3k.

Proof (sketch)

Consider an input with valuations $(\underbrace{1,...,1}_{n},\underbrace{\infty,...,\infty}_{\approx 2n/3})$. The optimal will be $(M_n \infty^{2n/3})^{1/n}$ Any deterministic algorithm will allocate first n items

evenly to avoid the input $(\underbrace{1,...,1})$.

Then it gets a value of $((1 + \infty)^{2n/3})^{1/n}$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Algorithm 1: Greedy

1 Given any deterministic tie-breaking rule 2 Initialize $X_1, \ldots, X_n = \emptyset$ 3 for t = 1, 2, ..., T do 4 | Item q_t arrives ; 5 | Find the least satisfied agent $j = \operatorname{argmin}_{i \in [n]} v_i(X_i)$; **6** $X_i = X_i \cup \{g_t\}$;

7 end

Definition (EF1)

For all agents i, j if $t = \operatorname{argmax}_{f \in T_i} v(f), v(T_i \setminus \{t\}) \le v(T_j)$.

Lemma

Greedy algorithms maintains an allocation that is at most $e^{1/e}\mbox{-approximate}.$ Note $e^{1/e}\approx 1.4446$

Proof

Follows from EF1 and a Barman et al. [2018] result.

э

Lemma

Greedy algorithms maintains an allocation that is at most $e^{1/e}\mbox{-approximate}.$ Note $e^{1/e}\approx 1.4446$

Proof

Follows from EF1 and a Barman et al. [2018] result.

Lemma

For all $\epsilon > 0$ any algorithm that is maintains the EF1 property returns an allocation that is at least $(e^{1/e} - \epsilon)$ -approximate.

イロト イヨト イヨト イヨト

3

Proof (sketch)

Similar to general lower bound. With $p/q \approx e$ we build input n = p and valuations $(1, ..., 1, \infty, ..., \infty)$. p-qpqOptimal is $(p^q \infty^{p-q})^{1/p}$ EF1 gets $(q^q(q+\infty)^{p-q})^{1/p}$ $CR = \frac{p^{q/p}}{a^{q/p}} \approx e^{1/e}$

< (T) > <

э

Using similar ideas we can get:

Theorem

Any (possibly **randomized**) algorithm has a competitive ratio of at least 1.3692.

∃ >

Using similar ideas we can get:

Theorem

Any (possibly **randomized**) algorithm has a competitive ratio of at least 1.3692.

Recap: Greedy CR 1.4446 $(e^{1/e})$ Deterministic LB 1.4422 $(3^{1/3})$ We have seen that the lower bounds use "infinite" items.

Theorem

If for all every item I we have $v(I) \leq fT$ where T is the sum of valuations and $f \in (0, \frac{1}{n})$ we have that the competitive ratio of the greedy algorithm is at most $(\sqrt{1-fn} + nf/2)^{-1}$.

Proof (sketch)

Use the the EF1 property and some approximations.

Example

If
$$f = 1/(2n)$$
 we get $CR \le 1.044$.

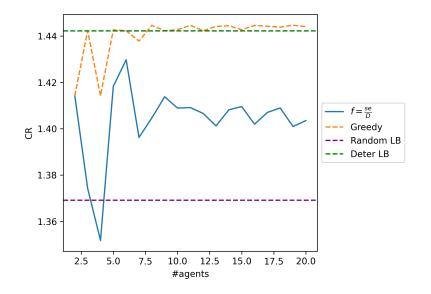
- 4 同 ト 4 三 ト - 4 三 ト - -

Beating deterministic algorithms?

- 1 Pick $D \in [n]$ following a given distribution $\{p_i\}_{i \in [n]}$;
- 2 if D = n then
- 3 Run the regular greedy algorithm 1;

4 else

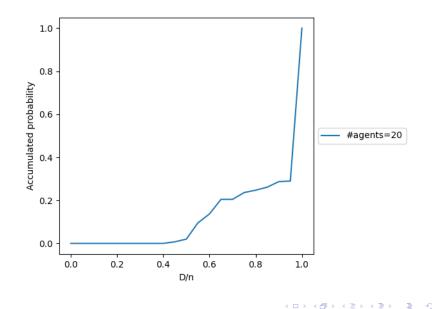
Maintain allocations $B_i \in [D]$ and $S_i \in [n] \setminus [D]$ such that 5 $v(B_i) > v(S_i) \forall i, j.$ for t = 1, 2, ..., T do 6 Item q_t arrives ; 7 $s = \sum_{i \in [n] \setminus [D]} v(S_i)$ 8 if $v(g_t) \ge se/n$ then 9 Allocate item g_t greedily in S; 10 else 1 12 Allocate item g_t greedily in B;



27th April 2023

< 行

문 🛌 🖻



27th April 2023

Introduction

- 2 General lower bounds
- 3 Equal valuations setting
 - Greedy and Lower bounds
 - Small items
 - A better randomized algorithm?

Affine valuations setting

Bivalued valuations setting
Binary with many of items
m-Bivalue setting

Conclusions

Generalizing the identical setting of the equal valuations section through *affine valuations*.

Definition (Affine value)

Given a base utility function $u(\cdot)$ and constants $a_i > 0, b_i \ge 0$, we define an **affine** value setting to be the case in which agent *i*'s valuation function v_i of receiving an item t satisfies $v_i(\{t\}) = a_i u(\{t\}) + b_i$.

Any problem instance with parameters $(a_i, b_i)_{i \in [n]}$, can be reduced to a problem instance with $(1, b'_i)_{i \in [n]}$.

Theorem

Any **deterministic** algorithm lacks from an **arbitrarily large** CR even if n = 2.

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

If
$$v = \min_{t \in [T]} u(\{t\})$$
 and $b = \min_{i \in [n]} b_i$.

$$B = \left(\prod_{i \in [n]} \frac{v + b_i}{v + b}\right)^{1/n} \tag{1}$$

There exists an algorithm with a competitive ratio at most $Be^{1/e}$.

イロト 不得 トイヨト イヨト

æ

Introduction

- 2 General lower bounds
- 3 Equal valuations setting
 - Greedy and Lower bounds
 - Small items
 - A better randomized algorithm?

Affine valuations setting

- Bivalued valuations setting
 Binary with many of items
 - *m*-Bivalue setting

Conclusions

Definition

Binary: $v_i(\cdot) \in \{0, 1\} \forall i \in [N]$ m-Bivalue: $v_i(\cdot) \in \{1, m\} \forall i \in [N] \text{ for } m > 1$

Image: A matrix and a matrix

э

Observation

The exponential lower bound of the first section used binary valuations.

∃ →

Observation

The exponential lower bound of the first section used binary valuations.

Theorem

In the binary value setting, if every agent values positively at least n items the greedy algorithm has a competitive ratio of at most $\Theta(n)$.

Lemma

If an agent positively values kn items the greedy algorithm allocates him at least k items.

(日) (四) (日) (日) (日)

Any algorithm has a competitive ratio of at least $\Theta(n)$ even if every agent values at least a given number of items (that can grow with n).

Proof (sketch)

Receive n rounds of items. On the first round the items are valued 1 by all agents. In each round an agent pass to value items by 0. In each round the number of received items is >> that in the previous one.

The round robin algorithm has at most a CR of m.

3 N 3

The round robin algorithm has at most a CR of m.

Theorem

The greedy algorithm has at least a CR of m(1-1/n) + 1/n.

э

The round robin algorithm has at most a CR of m.

Theorem

The greedy algorithm has at least a CR of m(1-1/n) + 1/n.

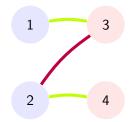
Theorem

Any online algorithm has a competitive ratio of at least $m^{5/18}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

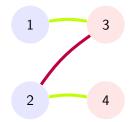
3

Bipartite maximum matching



Left side agents, right side items. Edge if agent values m the item. Inspired in the known lower bounds of this problem:

Bipartite maximum matching

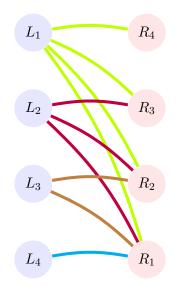


Left side agents, right side items. Edge if agent values m the item. Inspired in the known lower bounds of this problem:

Theorem

Any random tie-breaker algorithm has a competitive ratio of at least $m^{1/2-\epsilon}$ for all $\epsilon > 0$.

Proof



Edgar Moreno Martínez

Maximizing NSW in Online Settings

27th April 2023

ヘロト ヘロト ヘヨト ヘヨト

3

Introduction

- 2 General lower bounds
- 3 Equal valuations setting
 - Greedy and Lower bounds
 - Small items
 - A better randomized algorithm?
- Affine valuations setting
- Bivalued valuations setting
 Binary with many of items
 m-Bivalue setting
 - Conclusions

- Focus on determining lower bounds for competitive ratio.
- Positive results in some restricted scenarios.
- Greedy algorithm performs well in equal valuations scenario.
- Greedy algorithm is asymptotically tight in large number of items with binary valuations.
- No good positive result for *m*-bivalue setting.

- Finishing the started ideas: closing the deterministic gap in the equal valuations setting, or proving a good randomized algorithm, or finding a good algorithm for the *m*-bivalue setting.
- Investigation of bounds and algorithms under the random order arrival model would be particularly interesting.

Questions?

edgarmm19@gmail.com

Edgar Moreno Martínez

Maximizing NSW in Online Settings

27th April 2023

< ∃⇒

< □ > < 同 >

æ