
Undergraduate Thesis

in Mathematics and Computer Science

Maximizing Nash Social Welfare in

Online Settings
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Abstract

In this work we consider the problem of allocating a set of T indivisible goods to a set of n agents

in an online manner, with the goal of maximizing the Nash social welfare (NSW) to balance both

fairness and efficiency. In the online setting, goods arrive in a sequential fashion and the value of

each good is revealed only at the time of arrival, with these values generally selected by an adversary.

We examine the NSW problem within the identical and binary valuation settings, as well as

mild generalizations to each. We present lower and upper bounds on the competitive ratio for each

scenario. We highlight the exponential lower bound for the binary and general case, and good

guarantees for the greedy algorithm in several settings.

In the equal setting, we find an almost tight lower and upper ratio in line with the work of of

Barman et al. (EC’18). We also study the setting where a large number of binary items arrive

getting asymptotically tight guarantees. Lastly we use some ideas from the “bipartite maximum

matching” for deriving lower bounds in the bivalue setting.

MSC Code 91B32: Resource and cost allocation (including fair division, apportionment, etc.)

Keywords: Online Algorithms, Allocation Problems, Nash Social Welfare, Randomized Algo-

rithms, Competitive Ratio, Adversarial Input

En aquest treball considerem el problema online d’assignar un conjunt de T béns indivisibles a un

conjunt de n agents, con l’objectiu de maximitzar el Nash Social Welfare (NSW) per equilibrar tant

la equitat como la eficiència. En el model de problema online, els bèns arriben de manera seqüencial

i el valor de cada bé només es revela quan arriba, amb aquests valors normalment seleccionats por

un adversari.

Examinem el problema quan els agents valoran els béns de manera igual i binaria, aix́ı como

generalitzacions de cada cas. Presentem fites inferiors y superiors per al competitive ratio a cada

escenari. Destaquem la cota inferior exponencial para el cas binari i general, i bones garanties para

el algorisme greedy en diversos escenarios.

A l’escenari amb valoracions iguals, trobem un competitive ratio congruent amb el treball de

Barman et al. (EC’18). També estudiem l’escenario on arriben un gran número de béns amb val-

oració binaria i obtenim garanties assimptóticament ajustades. Por últim, utilitzem algunes ideas

del problema “bipartite maximum matching” per derivar fites inferiors en el escenari bivaluat.

Paraules clau: Algorismes Online, Problemes d’Assignació, Nash Social Welfare, Algorismes prob-

abilistic, Competitive Ratio
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En este trabajo consideramos el problema online de asignar un conjunto de T bienes indivisibles a

un conjunto de n agentes, con el objetivo de maximizar el Nash Social Welfare (NSW) para equi-

librar tanto la equidad como la eficiencia. En el modelo de problema online, los bienes llegan de

forma secuencial y el valor de cada bien solo se revela en el momento de su llegada, con estos valores

seleccionados normalmente por un adversario.

Examinamos el problema cuando los agentes valoran los items de manera igual y binaria, aśı

como generalizaciones a cada caso. Presentamos cotas inferiores y superiores pera el competitive

ratio para cada escenario. Destacamos la cota inferior exponencial para el caso binario y general,

y buenas garant́ıas para el algoritmo greedy en varios escenarios.

En el escenario con valoraciones iguales, encontramos un competitive ratio en ĺınea con el trabajo

de Barman et al. (EC’18). También estudiamos el escenario en el que llega un gran número de

bienes con valoración binaria y obtenemos garant́ıas asintóticamente ajustadas. Por último, uti-

lizamos algunas ideas del problema “bipartite maximum matching” para derivar ĺımites inferiores

en el escenario bivaluado.

Palabras clave: Algoritmo Online, Problemas de Asignación, Nash Social Welfare, Algoritmos

aleatorizados, Competitive Ratio
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1. Introduction

It is self-evident that resources in our world are finite and so is wealth in our society. Thus, how

should it be distributed is a difficult question. The study of this problem comprises the whole area

of economics’s studies with deep implications in sociology, history and philosophy.

In recent times this kind of questions have had a translation into more abstract terms entering

the fields of mathematics and computer science. This developed the whole area of (Algorithmic)

Game theory. It tries to model the decisions of humans beings supposing that they were rational

agents trying to maximize an utility function in a set environment. This maximization can come

from competition or cooperation between them. Although its results do not always match real-

ity (Camerer [2014]) it gives good intuitions about which incentivise can people have in certain

situations.

The area developed to study two other interesting questions: how to design mechanisms that

incentives agents to compete in a positive way (for the designer of the mechanism) and how to

distribute a given number of scarce resources. This last question is known as allocation problems

and creates a family of other questions in the way. This work focuses on an specific sub-problem of

allocation theory but an introduction of allocation problems comprises the next section.

1.1 Allocation problems

Suppose that we have a set of n agents A = [n] and a set of goods (or items) G, that they can

not possess at the same time. Furthermore suppose that we have a function u : A × P → R≥0,

where P = P(G) (the subsets of G), we call this function utility function and is usually noted as

ui(p) := u(i, p). This utility functions reveals the value that each agent gives to obtaining an specific

set of goods. There are several properties that a utility function is usually required to satisfy:

• Non-negativity: every set of items provides a non-negative utility to the agents. Although

this has been the case for the vast majority of the research on the field, there is some recent

works (Aziz et al. [2018]) that study the setting with goods and chores where the latter are

something to avoid with negative utility.

• Positive marginal impact: adding items has a non-negative impact on the valuations, this is

a very natural axiom. Formally, given a set of items S and an extra item I, for any agent i

we have ui(S ∪ {I}) ≥ ui(S).

• Marginal-decreasing utility: this asks that when adding an item to a set of items the added

utility decreases when the original set has more items. Formally, if we have sets of items A,B

with A ⊆ B and an item I, for any agent i we have ui(A∪{I})−ui(A) ≥ ui(B∪{I})−ui(B).

6



1.1. ALLOCATION PROBLEMS 7

We will also suppose that u is additive, this is that for P, P ′ ⊆ G s.t. P ∩ P ′ = ∅ we have

ui(P ∪ P ′) = ui(P ) + ui(P
′) for all i ∈ [n]. This is the most simple setting but is usually realistic

enough. In this work we will use indivisible items, this is, that we can not fraction them and allocate

each fraction to a different agent. It is a wide studied topic, but there is also vast literature in the

divisible setting from which we will borrow some results.

Now a question arises: if we are a “dictator” that decides how to allocate the items, which

allocation should we prefer. In order to answer this question we can introduce a “social utility”

function for a partition. Given {Xi}i∈[n] s.t.
⋃
Xi = G and Xi ∩Xj = ∅ let F ({Xi}i∈[n]) ∈ R its

value. Then we want to maximize this function F . Then the big question here is how to choose F .

In this work we choose what is known as Nash Social Welfare (NSW). There are also non-numeric

properties that might be desirable to achieve. We discuss social utility functions and this properties

in the next section.

1.1.1 Why NSW?

The question about which properties are desirable falls on the social sciences spectrum, but intu-

itively we can understand some of the most studied (Plaut and Roughgarden [2017]):

• Pareto Optimality: we call that an allocation is Pareto Optimal if no agent can increase

his utility without worsening someone else. Formally, a partition {Xi}i∈[n] is Pareto optimal

if there does not exists any other partition {Yi}i∈[n] such that for all i ui(Yi) ≥ ui(Xi) and

there exists an agent i s.t. ui(Yi) > ui(Xi).

• Envy-freeness(EF): we call an allocation {Xi}i∈[n] envy free if all agents prefer their items

before anyone else’s items, formally, for all i, j ∈ [n] we have that ui(Xi) ≥ ui(Xj). But this

property can not always be satisfied, just take two agents and a single good valued positively

by both agents.

• EF1: an easier property derived from the former is what we call Envy-freeness except for one

good. Each agent should prefer his items to everyone else except for maybe one item from the

bunch of another agent. Formally, we need that for all i, j ∈ [n] there exists an I ∈ Xj such

that ui(Xi) ≥ ui(Xj\{I}).

The other question is how to derive a general utility that “summarizes” the utilities from all agents

(we call this function a social welfare function). There are also several possible answers. Usually

we want that those answers have some desirable properties. The main ones would be (Moulin

[2003]):

• Monotonicity: if someone increases his utility without affecting the others utility the social

welfare function should not decrease. This is basically the same as requiring Pareto Optimality

for the optimum allocation.

• Symmetry: every permutation of an allocation should have the same social welfare. This

assumes that all the agents are “equally important”. There is some work in the generalized
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setting where this does not hold (Chakraborty et al. [2022]) but we will not discuss this

generalized setting.

• Continuity: the function has to be continuous in the allocated utilities of each agent. This

is if we think F : Rn → R where n is the number of agents and the inputs are the total utility

received by each agent, the function is continuous in each variable.

• Weak invariance up to scaling: if we multiply all agents utility by the same factor, the

optimal allocations should remain optimal. This says that we do not care about measuring

the welfare in dollars, cents of a dollar or million dollars.

We discuss 3 possible social welfare functions:

The first obvious objective could be to maximize the sum of the utilities of the agents. This

focuses on “efficiency”, we will allocate each item to the agent that values it the most. We have

then that Fef({Xi}) :=
∑

ui(Xi)
n . This function could not be desirable from an egalitarian point of

view: all agents might be allocated to the same single agent causing that the rest of the agents get

nothing.

In the other side of the spectrum we have the egalitarian measure: the objective is that the

smallest utility is the biggest it can be. This is usually known as the max-min objective with

Feq({Xi}) := minui(Xi). This kind of approaches that fall under the name of Santa Claus problems

(Bansal and Sviridenko [2006]) lack from the efficiency point of view, we might allocate items to

agents that value them much less that others in order to ensure equality.

In the “middle” of the two previous utility functions we have the Nash Social Welfare function:

the geometric mean of the utilities. We define FNSW({Xi}) := (
∏

ui(Xi))
1/n. This function has

some good qualities that made it to be widely studied (Caragiannis et al. [2019]; Kaneko and

Nakamura [1979]). If we recall the means inequalities we have that Feq ≤ FNSW ≤ Fef with equality

if and only if all agents have the same utility. This means that this function makes a compromise

between equality and efficiency. It increases when the utility of an agent increases provided all

utilities are non-zero (as happens in Fef but not always in Feq) and it also increases if the inequality

between two agents is reduced without reducing the total sum of utilities.

It is also “invariant up to scaling” (an stronger assumption that the already discussed “weak

invariance up to scaling”). This means that if we multiply all the valuations of a single agent by a

constant factor the optimal allocations will not change. This is convenient as we do not need that

the agents use the same scale when giving utilities to the set of items. Finally it is EF1 and Pareto

compatible, in the sense that any allocation that maximizes NSW will be both EF1 and Pareto

optimal.

This good qualities have made that a good amount of work studies allocation problems under

NSW maximization and it will also be the objective of our work.
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1.2 Online problems

The problem of allocating goods among a group of agents to maximize the NSW is an interesting

topic. However, in recent times, a lot of algorithms research has shifted to a more realistic and

practical scenario: the online problem (Alon et al. [2006]; Buchbinder and Naor [2009]; Karp et al.

[1990]; Mehta and others [2013]; Devanur and Jain [2012]). In this setting, items arrive continuously

over time and their values are only revealed when they arrive. The allocation of these items must

be done immediately once their value is revealed. This scenario better represents the frequent,

web-based procedures that occur daily.

For instance, the distribution of computational resources in a high-performance computer to

researchers at a university. Researchers may request resources at different times throughout the

day, and these requests must be handled as they arrive. The goal is to prioritize researchers with

upcoming deadlines while also not hindering other users. This setting adds complexity to the

problem, as we do not know the values of the items that will later come. Then, a decision that

looks good in the present could be bad if we knew all future items.

In contrast we will talk about offline problems when the input is known in advance, i.e. what

everyone understands as a regular algorithmic problem.

Online problems have been studied in very different settings. When we study offline algorithms

we are usually interested in the efficiency of the algorithms as the number of instructions that

it executes, as any Computer Science student knows. In the online setting the efficiency takes a

secondary role and the algorithms are usually compared by their competitive ratio (CR). Given

an algorithm Alg, an input X and a function to maximize (minimize) F we are interested in

CRX
Alg := FOpt(X)

FAlg(X) (CRX
Alg := FAlg(X)

FOpt(X)) where FOpt(X) is the optimum of F given X in an offline

manner and FAlg(X) is the value obtained by the algorithm (or its expectancy if we are dealing with

randomized algorithms). Given a set of inputs I (usually all possible inputs) we define CRAlg :=

supX∈I CRX
Alg. Note that an algorithm with CR = 1 would be the best possible scenario, and the

greater the competitive ratio the worst.

1.3 Randomized algorithms

Randomized algorithms is a wide class of algorithms that use some sort of randomness, usually

given by a mechanism that can generate random bits. Those algorithms have shown to be basic

for a lot of problems (Karp [1991]). They can be used for speeding up calculations, for obtaining

approximated algorithms in intractable problems as the well-known 7/8 approximation of 3−SAT,

for simplicity (Motwani and Raghavan [2018])...

But when facing online problems they are useful for another reason: they can “hedge risk”.

Let’s imagine a setting where we have two agents and two items, the first item is valued 1 by both

agents but the second is valued by 1 by one of the agents and 0 by the other. Any deterministic

algorithm will get a NSW of 0 in the input where the agent that it allocates the first item is the

one that positively values the second item. In the other hand an algorithm that chooses who to
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allocate the first item randomly has an expected NSW of 1/2.

From this we can see that random algorithms will play a central role in our work. We can

summarize the explained about online problems and random algorithms with the following classical

problem.

1.3.1 Ski-rental problem

This is a classic problem that shows the strength of random algorithms in online problems. Suppose

that we will go skiing for a number of days N that we do not know before hand. Each day that we

go skiing we can choose to either rent skis for 1 dollar or buy them for C > 1 dollars (we will suppose

C ∈ Z), in which case we will not need to rent them in any future day. We want to minimize the

money spent. This is, if N was known before hand we would spend min(N,C), renting every day

if N < C and buying in the other case.

We can analyze what happens with deterministic algorithms. Suppose that a deterministic

algorithm Alg buys the skis in the day T (that might depend on C) and let CAlg be the cost of

the algorithm and COpt = min(N,C) the optimal cost. We have that CAlg = N if N < T and

CAlg = T −1+C otherwise. Then we have 3 possibilities for the competitive ratio. Note that when

N ≥ T taking N = T will be the worst thing for the algorithm as it will not increase the cost from

there.

• N ≤ C and N < T : CR = N
N = 1.

• N ≤ C and N ≥ T (N = T ) : CR = T−1+C
N = T−1+C

T .

• N > C and N < T : CR = N
C

• N > C and N ≥ T (N = T ): CR = T−1+C
C = N−1+C

C . Note that this CR is always greater

that the previous one.

Then we have that the competitive ratio will happen when N = T and will be either T−1+C
T or

T−1+C
C . We want to take a T that minimizes the maximum of the two previous ratios. This will

happen when T−1+C
T = T−1+C

C ⇐⇒ C = T and we have that CR = 2C−1
C = 2 − 1/C. Then the

optimal algorithm buys the skis in the C-th day and taking C arbitrarily large has a competitive

ratio of 2.

We can use randomness to improve this algorithm designing a distribution over the number

of days until buying the skis, and picking a number of days randomly following the distribution.

This reduces the competitive ratio as for every number of days N we will have some probability of

making a good decision. We can see how this process work in the following lemma:

Lemma 1. There exists a random algorithm with competitive ratio 1
1−(1−1/C)C

which is at most
e

e−1 ≈ 1.58.

Proof. Let D = {pi}i∈Z+ the distribution where pi is the probability that we buy the skis in the i-th

day. Then if we have N days we will have an expected cost of: AD
N =

∑
i≤N (i−1+C)pi+N

∑
i>N pi.
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We want to find the infimum c such there exists some D with
AD

N
min(C,N) ≤ c, this is the competitive

ratio is at most c for any number of days.

Note that when N → ∞ we have
∑

i∈Z+ (i−1+C)pi
C ≤ c. We have that

∑
i∈Z+(i − 1 + C)pi >∑

i≤N (i− 1+C)pi +N
∑

i>N pi for all N ≥ C. Then we can delete all conditions with N ∈ [C,∞)

and keep conditions with N ∈ [C − 1] ∪ {∞}. Note now that for this set of conditions the cost of

the strategy with i = C (buying the day C) day is smaller than the cost of buying on any day with

i > C. Then we can assume that pi = 0 for all i > C. We are left with a finite system of inequalities:

IN :
∑

i≤N (i−1+C)pi+N
∑

N<i≤C pi ≤ cN for N ∈ [C−1] and IC :
∑

i≤C(i−1+C)pi ≤ cC. We

want to see that we can substitute the inequalities by equalities. Suppose that c∗ is the minimum

possible c (we can take it as a minimum by compactness) and an inequality is slack, let it be Ia.

Then note suppose we take p′a = pa + ϵ, p′a+1 = pa+1 − ϵ for an small enough ϵ > 0. This does not

affect the previous inequalities and creates an slack in inequality IC . Then we can suppose than

inequality C is slack. Taking p′1 = p1 − ϵ, p′C = pC + ϵ we have that every inequality is slack, a

contradiction.

Calling Ei to the corresponding equalities take E′
i := Ei − Ei−1 for a > 1 and E′

1 = E1 we have

E′
i : Cpi +

∑
j>i pj = c. Solving the now triangular system we get pi =

(
C−1
C

)C−i c
C . Recalling now

that
∑

pi = 1 we have c = 1
1−(1−1/C)C

< e
e−1 , reaching the bound in the limit when C → ∞. A

step by step when C = 4 is at figure 1.3.1. �

We have been able to design a distribution that defines a random algorithm, “hedging” the

decisions and improving the deterministic algorithm lower bound. We will use this same idea in

Chapter 3.

1.3.2 Yao’s Principle

From the previous example we can see how to interpret a randomized algorithm as a distribution

over deterministic algorithms. This can help into stating a principle that helps us to establish upper

bounds on the utility of any randomized algorithm. This is known as Yao’s principle:

Theorem 1 (Yao’s Principle). Consider a set of inputs X and let A be the set of all deterministic

algorithms that solve the problem. Let u : X ×A → R≥0 be the utility function. For any probability

distribution q over X and any randomized algorithm with distribution p over A we have:

min
x∈X

Ep[u(x,A)] ≤ max
a∈A

Eq[u(X, a)]

This is the worst case of any randomized algorithm is at most the expected value of the best deter-

ministic algorithm over the distribution of inputs.

Proof.

min
x∈X

Ep[u(x,A)] =
∑
y∈X

qy min
x∈X

Ep[u(x,A)] ≤
∑
y∈X

qyEp[u(y,A)] =
∑
y∈X

∑
b∈A

pbqyu(y, b) =
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inf c s.t.

Cp1 + p2 + p3 + p4 + p5 + · · · ≤ c · 1
Cp1 + (C + 1)p2 + 2p3 + 2p4 + 2p5 + · · · ≤ c · 2
Cp1 + (C + 1)p2 + (C + 2)p3 + 3p4 + 3p5 + · · · ≤ c · 3
Cp1 + (C + 1)p2 + (C + 2)p3 + (C + 3)p4 + 4p5 + · · · ≤ c · 4
Cp1 + (C + 1)p2 + (C + 2)p3 + (C + 3)p4 + (C + 4)p5 + · · · ≤ c · 4

... ≤ c · 4
Cp1 + (C + 1)p2 + (C + 2)p3 + (C + 3)p4 + (C + 4)p5 + · · · ≤ c · 4 = cC

→

inf c s.t.
Cp1 + p2 + p3 + p4 + p5 + · · · ≤ c · 1
Cp1 + (C + 1)p2 + 2p3 + 2p4 + 2p5 + · · · ≤ c · 2
Cp1 + (C + 1)p2 + (C + 2)p3 + 3p4 + 3p5 + · · · ≤ c · 3
Cp1 + (C + 1)p2 + (C + 2)p3 + (C + 3)p4 + (C + 4)p5 + · · · ≤ c · 4 = cC

→

min c s.t.
Cp1 + p2 + p3 + p4 ≤ c · 1
Cp1 + (C + 1)p2 + 2p3 + 2p4 ≤ c · 2
Cp1 + (C + 1)p2 + (C + 2)p3 + 3p4 ≤ c · 3
Cp1 + (C + 1)p2 + (C + 2)p3 + (C + 3)p4 ≤ c · 4 = cC

→

min c s.t.
Cp1 + p2 + p3 + p4 = c · 1
Cp1 + (C + 1)p2 + 2p3 + 2p4 = c · 2
Cp1 + (C + 1)p2 + (C + 2)p3 + 3p4 = c · 3
Cp1 + (C + 1)p2 + (C + 2)p3 + (C + 3)p4 = c · 4 = cC

→

Figure 1.1: Steps of the proof of Lemma 1 with C = 4 (although a general C is used when possible)
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∑
b∈A

pbEq[u(X, b)] ≤
∑
b∈A

pbmax
a∈A

Eq[u(X, a)] = max
a∈A

Eq[u(X, a)]

�

1.4 A proper definition of our problem

Consider n agents and T indivisible items, where each item t ∈ [T ] arrives in a sequential manner.

Each agent has value vi({t}) ≥ 0 for the item t that is revealed to us only at the time of its arrival.

Let Xt
i be the set of items allocated to agent i as of round t, and let Xi =

⋃
tX

t
i . Thus, the total

value of items allocated to an agent i is given by vi(Xi) =
∑

x∈Xi
vi(x). Our goal is to produce

an allocation X = {X1, ..., Xn} of the set [T ] that maximizes the value of the Nash social welfare

(NSW).

Definition 1 (Nash Social Welfare). The Nash Social Welfare (NSW) of an allocation X is

defined as the geometric mean of agents’ valuations:

NSW (X) =

(∏
i

vi(Xi)

)1/n

.

In case we use a randomized algorithm which possibly induces multiple allocations given the same

sequence of items, we take expectation on the NSW and abuse it by NSW of the algorithm.

We here measure the quality of an online algorithm in terms of their competitive ratio with

respect to the above objective. Let NSWAlg(I) denote the NSW value of the allocation induced by

an online algorithm on a given instance I, and let NSWOpt(I) denote the optimal such objective

value. Then the competitive ratio (CR) of the objective is defined as

α = sup
I

NSWOpt(I)
NSWAlg(I)

.

We often say that Alg is α-approximate if it has a competitive ratio of α.

Until now we have not defined properly how the items arrive in our online problem. This

is an important property that can affect greatly in the difficulty of the problem and thus in the

competitive ratio. We will consider the three following models, from stronger to weaker:

Definition 2 (Adaptative Online Input). Just before every item arrives an adversary selects the

value of such item for all n agents, thus this can depend on the previous decisions by the algorithm.

Definition 3 (Adversarial Input). An adversary selects the value of each arriving item t for all n

agents, as well as the order in which these items arrive before the algorithm starts.

Definition 4 (Random Order Input). An adversary selects the value of each arriving item t for all

n agents before the algorithm starts, but not the order. This means that we will be interested in the

expected NSW for all the possible orderings of the selected input.
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The first input model is so strong that randomization does not help. Intuitively any hedging

that we could do via randomization will be canceled as the adversary will pick the worst possibility

after the random decision has been made. Thus we will have to pick the decision that maximizes

the worst outcome, that is exactly what a deterministic algorithm does. This can be formalized as

found in Ben-David et al. [1990]:

Theorem 2. If there is a randomized algorithm that is α-approximate against any adaptive online

adversary then there also exists an α-approximate deterministic algorithm.

We will usually work with the Adversarial Input model, but we will also discuss the two other

models in some settings.

1.5 Related problems

In this section we discuss some similar problems that might hint us in which kind of results we will

have in the work. We mainly discuss similar objective functions, the offline version of the problem

and the divisible items case:

1.5.1 NSW offline maximization

The offline version of the NSW maximization problem has been a widely studied problem. The

first works focused on the computational complexity. The work of Magnus and Jörg [2010] showed

that the problem is NP-Complete via the Partition problem. Then Lee [2017] proved that the

problem is also APX. The class of APX-Hard contains those problems that admit polynomial

time algorithms that give a constant factor approximation. The survey of Nguyen et al. [2013] is a

good reference in this kind of questions.

The first positive results is found on the work of Cole and Gkatzelis [2015] where they present

both a weakly-polynomial and a strong-polynomial algorithm that find 2 · e1/e approximations.

Interestingly they use the Eisenberg-Gale program (see next subsection) in their algorithms in

order to hint how the integral allocations should work. They tightened their result to a factor of 2

in Cole et al. [2017].

The work of Barman et al. [2018] lowered the factor to e1/e that matches the integrality gap (the

ratio between the integral and relaxed solutions) of the relaxation that Cole et al. [2017] stated. We

strongly take advantage of their results in Chapter 3.

1.5.2 Divisible items online problem

We have seen that the offline problem with indivisible items is a difficult problem, both NP -hard

and APX−hard. We can also consider the divisible setting. In this case given an item valued vi

by agent i we can split it between agents, giving each agent a xi ∈ [0, 1] fraction on the item and

receiving a utility of xivi, as far as
∑

xi = 1. In this case the problem can be stated as a convex
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program, known as Eisenberg-Gale program, just by taking the logarithm of the objective function:

maximize

n∑
i=1

log(

m∑
j=1

xijvi(j))

subject to
∑
i∈[n]

xij = 1, ∀j ∈ [m]

xij ≥ 0, ∀i ∈ [n], ∀j ∈ [m]

Although this optimization problem can not be solved with the standard polynomical linear pro-

gramming techniques (as it is not linear), Devanur et al. [2008] showed that it can be solved in

polynomial time, although the question whether it can be solved in strongly polynomial time re-

mains open. This fact hints us that the divisible setting is easier than the indivisible one, and this

is the case in the online setting as well.

The work in the offline setting received two interesting contributions last year (2022). The work

of Banerjee et al. [2022] provided an algorithm using predictions, this is an algorithm that is also

given the sum of valuation of all items for each agent before receiving any items. They also showed

that the algorithm is nearly asymptotically tight versus an adversarial online input.

Trying to avoid predictions the work Huang et al. [2022] studies a setting where the total

valuations of the agents are balanced or that the optimal assignations are balanced. Under this

setting they provide similar results of the ones provided by Banerjee et al. [2022].

Both works use two similar techniques that are impossible (or at least very difficult) to translate

into the indivisible setting: first they allocate half of very item evenly so they make sure that no

agent will receive a very low total utility. For the second half of every item they solve a variant of the

Eisenberg-Gale program and allocate based on that. Although sometimes the fractional problems

can be translated into randomized algorithms interpreting the fraction as a probability this is not

the case for our problem as we will be able to show via our more restricting lower bounds. This

implies that the ideas of the divisible setting are difficultly applied to our setting.

1.5.3 Online Santa Claus problem

In the previous sections we discussed the sum of utilities and the max-min function as interesting

objectives to maximize instead of the NSW . In the context of additive valuations maximizing the

sum of utilities is trivial as it is enough to allocate each item to the agent that values it the most.

Maximizing the max-min objective is a more interesting task. This problem is known as the Santa

Claus problem and has been widely studied in both online and offline setting.

The online problem is similar to ours in some aspects: you have to ensure that every agent

receives a good amount of utility, which is a problem specially when few items are available and

some agents might have no allocated items at all. Note that given a divisible settings with equal

valuation for all agents both quantities are maximized allocating the same utility for all agents. It

also has to deal with a sudden arrival of big items that implies that having a very similar value for

all agents might drawback. In the other hand for maximizing the NSW we do not only care about
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Bound Identical Affine Binary Binary (many items) m-Bivalue

Upper 1.4447 (Thm 5) 1.4447 ·B (Thm 13) − Θ(n) (Thm 14) m (Thm 17)

Lower
Deter: 1.4422 (Thm 6)
Rand: 1.3692 (Thm 10)

Deter: ∞ (Thm 12)
Rand: 1.3692 (Thm 10)

eΘ(n) (Thm 3) Θ(n) (Thm 15) m5/18 (Thm 16)

Table 1.1: Summary of results. Deter denotes the deterministic algorithm and Rand refers to the
randomized algorithm. For the upper bound in the affine utility setting, B denotes the quantity
defined in (4.1). The parameter m in the bivalue setting denotes that each item has a value in
{1,m} for m > 1. We do not explore the upper bound in the general binary setting as the lower
bound turns out to be too pessimistic so the matching algorithm would not be interesting.

the minimum but all the distribution of utilities, that ultimately translate on a more complicated

problem.

The work of Hajiaghayi et al. [2022] is a source of inspiration for the present work. They deal

with the binary setting that we also discuss in Chapter 5 and they overcome the inherent lower

bounds that we also find in chapters 2 and 5 by considering the setting where a large number of

items arrive. They are able to provide a (1−ϵ) approximated algorithm in the random order setting

given that the optimum is ≥ Ω(log n/ϵ2) (i.e: it is possible to allocate a value of at least logn/ϵ2 to

every agent at the same time). They see that the result is tight in n and that a lower bound exist

if the dependence of ϵ is 1/ϵ instead of 1/ϵ2. They also discuss an algorithm and lower bound for

the adversarial input setting that we improve in section 5.2.1.

1.6 Overview of the results

In the following chapters we study the online NSW-maximization problem under a various number

of settings. In the next Chapter 2 we see that under important restrictions our problem lacks an

exponential (in the number of agents) competitive ratio lower bound.

This directs us to consider restricted scenarios. We discuss the scenario where all agents have the

same valuation function in Chapter 3 deriving constant lower and upper bounds on the competitive

ratio. We study deterministic and random algorithms and we study some fundamental bounds on

the setting together with parameterization of the competitive ratio when the values of the items

follow some real world-inspired assumptions.

We present a generalization of the previous setting with affine valuations in Chapter 4.

Finally we discuss the setting where the valuations can only take two possible values in Chapter

5. When those values are 0 and 1 (we call it binary setting) we derive tight asymptotic results.

We also derive some bounds when the possible values are both non-zero and show an interesting

connection with the online maximum matching problem.

An overview of the main results can be checked at Table 1.1.



2. General lower bounds

We will start showing that any algorithm lacks from an competitive ratio of at least eΘ(n) where

n is the number of agents. This holds for any input model and even if we have predictions on the

total utility of the agents, and we restrict the valuations to be binary (a setting that is discussed

more in-depth in chapter 5). This results shows how the indivisible setting is more complex than

the divisible setting comparing this results with the paper of Banerjee et al. [2022] where they are

able to get logarithmic-bounded competitive ratios when they are able to access predictions.

We are able to derive this bounds exploiting the fact that the NSW is 0 whenever the utility

of an agent is 0. Imagine that the algorithm receives an item valued by 1 by two agents, and that

one of those agents will not value positively any other item. With probability 1/2 the algorithm

will allocate the item to the “wrong” agent. Pairing 2n agents in this manner we would have a

probability of getting all the guesses right of (12)
n.

We formalize this idea in the next theorem. Note that we also restrict us to the easier input

model (the random order one) and we give the algorithm predictions, as done in the aforemented

work of Banerjee et al. [2022].

Theorem 3. In the binary value setting, for any (randomized) algorithm, the competitive ratio is

at least eΘ(n), even if the algorithm knows the total utility of agents beforehand and the items arrive

in random order.

Proof. For an integer k ≥ 1, set n = T = 3k. We will specify a distribution over instances with n

agents and T items and show that for any algorithm, the expected value of NSW is at most (89)
n/3

times the optimal Nash social welfare. Here the expectation is over both the randomness of the

algorithm and the randomness of the instance. This implies the theorem’s statement since it means

the algorithm should satisfy the condition for at least some instance, by a probabilistic method

argument.

We let x1, . . . , xT denote the items in question and note that, in the random order setting,

g1, . . . , gT are a random permutation of x1, . . . , xT . We will specify each instance by the vector of

valuations for each item x. We use the notation v(x) := (vi(x))i∈[n] to denote this vector. For each

j ∈ [0, k − 1], we independently draw an integer τ(j) ∈ {3j + 1, 3j + 2, 3j + 3}. We then set the

valuations of items x3j , x3j+1, x3j+2 as

v(x3j+1) := e3j+1 + e3j+2 + e3j+3

v(x3j+2) := eτ(j)

v(x3j+3) := e3j+1 + e3j+2 + e3j+3 − eτ(j).

In other words, two of the agents in {3j + 1, 3j + 2, 3j + 3} have valuation 1 for x3j+1 and x3j+3

17
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while the other agent has valuation 1 for x3j+1 x3j+2. Defining NSWj := (
∏3j+3

i=3j+1 vi(Xi))
1/n. We

decompose NSW(X) as

NSW(X) :=

k−1∏
j=0

NSWj .

The main intuition behind the proof is as follows: for each j ∈ [0, k− 1], we have NSW(X) = 0

with probability at least 1/9. This is because if x3j+1 arrives first, then, with probability 1/3, the

algorithm will allocate it to the agent who values x3j+2 as well, which leads to NSW = 0 as at least

one of the agents will not be satisfied. Given the independence between the NSWj , this implies the

desired bound of the theorem statement. Obtaining formal proof requires careful reasoning however

given the random nature of the argument.

Let S denote the random seed of the algorithm. Let σ denote the underlying permutation of the

elements. Assume that we further randomly permute σj for j ∈ [0, k] to change the inner ordering

of the elements x3j+1, x3j+2, x3j+3. We need to show that

Eσ,(σj)kj=0,(τj)
k
j=0,S

[NSW] <

(
8

9

)k

.

Fix the value of σ, S. We will show that

Eσj ,τj [NSW|σ, S] <
(
8

9

)k

.

This implies the statement by the law of iterated expectation. For the rest of the proof, we assume

the conditioning on σ, S and will not explicitly specify it in the notation.

Sort the integers j ∈ [0, k− 1] in the order of first appearance of some x ∈ {x3j+1, x3j+2, x3j+3}
and let σ′ be the corresponding permutation. Formally, we assume that the first element in

{x3σ′(j−1)+1, x3σ′(j−1)+2, x3σ′(j−1)+3} arrives before the first element in {x3σ′(j)+1, x3σ′(j)+2, x3σ′(j)+3}.
We note that σ′ is fully determined by σ′, and is therefore fixed given the conditioning on σ, as it

is not affected by τj or σj .

We first make the following two claims.

Claim 1. The value of NSWσ′(j) is fully determined by Befj := {(σσ′(j′), τσ′(j′)) : j
′ < j}.

Proof. We first observe that the algorithm’s allocation is fully determined by the items it has

previously seen and its internal randomness. The past items are fully determined however by Befj

and the internal randomness is also fixed since we have conditioned on S. �

Claim 2. For each j ∈ [0, k− 1], conditioned on Befj, we have NSWj = 0 with probability at least

1/9.

Proof. Since τj , σj were assumed to be i.i.d, with probability at least 1/3, x3σ′(j)+1 arrives before

x3σ′(j)+2 and x3σ′(j)+3. When the algorithm sees x3σ′(j)+1, it needs to irrevocably decide which
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agent to allocate it to. The decision is deterministic at this point however since we have fixed

on the internal randomness of the algorithm, the items that have already arrived (by conditioning

on Befj) and the current item (by assuming that the algorithm sees x3σ′(j)+1). Assume that it

allocates the item to x1 (the other cases are handled similarly by symmetry). With probability 1
3 ,

we have τ(j) = 1. It is clear that at least one of 3j + 2 and 3j + 3 will have utility zero because

x3j+3 can only be allocated to one of them. Therefore, NSW becomes zero. The overall probability

of this happening is at least 1
3 · 1

3 = 1
9 , finishing the proof. �

We now use the following lemma.

Lemma 2. Let X1, . . . , Xk and Y1, . . . , Yk be random variables such that for each i ∈ [k]:

1. Xi is fully determined by Y1, . . . , Yi and

2. E [Xi|Y1, . . . , Yi−1] ≤ c for some fixed c.

Then E [
∏

Xi] ≤ ck.

Proof of the Lemma. We prove by reverse induction that

E

∏
j≥i

Xj |Y1, . . . , Yi−1

 ≤ ck−i.

Setting i = 0 then finishes the proof.

For i = k, the claim holds trivially. Assuming it holds for i + 1, we will show it holds for i as

well. Fix the value of Y1, . . . , Yi−1. Letting the abbreviation Y≤i denote Y1, . . . , Yi,

E

∏
j≥i

Xj |Y≤i−1

 = EYi

E
∏
j≥i

Xj |Y≤i


= EYi

XiE

 ∏
j≥i+1

Xj |Y≤i


≤ EYi

[
Xic

k−i+1
]

≤ ck−i,

where the first equality follows from the law of iterated expectation, the second equality follows

from the fact that Xi is fully determined by Y≤i (recall that we have fixed Y≤i−1), the first in-

equality follows from the induction hypothesis and the final inequality follows from the assumption

E [Xi|Y≤i] ≤ c. �

Invoking Lemma 2 (with Xj set to NSWσ′(j) and Yi set to (σσ′(j), τσ′(j))) finishes the proof. We

note that the required conditions of the lemma are satisfied because of Claims 1 and 2. �
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Note that we get a competitive ratio of (98)
n but that the base of the exponential is not optimal.

Dropping the predictions assumption it is easy to derive stronger results but we do not think that

it is very interesting as the exponential nature of the results.

Changing the input model from random order to adversarial input model we can derive a stronger

competitive ratio of n! using a very similar idea:

Theorem 4. Under an adversarial input, the competitive ratio for n agents is at least n!.

Proof. Consider the set of valuations for n agents and n items S = {{eσ(1)+eσ(2)+ ...+eσ(n), eσ(2)+

... + eσ(n), ..., eσ(n−1) + eσ(n), eσ(n)}|σ permutation of n elements} and the uniform probability q in

S. The optimal allocation will set allocate the i-th item to the σ(i)-th agent getting a NSW of 1.

Now every deterministic algorithm will get a NSW of 1 in only one of the inputs in S and 0 in the

rest. Then by Yao’s principle the expected NSW of any random algorithm is bounded above by

1/n!. The stated competitive ratio follows. �

Note than any deterministic algorithm will get a competitive ratio of ∞ so it will be also be the

competitive ratio of the online adversarial input.

This results discourages us to talk about positive results as they will be exponentially bad. This

is also the reason that in the following sections we study other settings with extra assumptions

about the utility function.



3. Equal valuations setting

After the negative results in the general settings we focus on a simplification of the problem. Here

we suppose that all agents value items in the same way. This is for all i, j ∈ [n] we have vi = vj .

This setting is the simplest when we think about real-world problems. Here we do not have

items that valued differently by agents, but a same utility that is agreed for everyone. This can be

the case of well established products that a have a price that is widely accepted. Take for example

an university that received some new computers with different specifications and whats to divide

them to different faculties such that the received value in dollars for each faculty is well distributed

under the Nash Social Welfare point of view.

One interesting thing is that in the case when n = 2 this reduces to the partition problem. In this

problem we are given a set of non-negative numbers and we want to make two partitions such that

each one that adds up to as near to half of the sum as possible. This is known to be a NP-problem.

We can easily reduce our problem to it noticing that we want to maximize
√
a1a2 =

√
a1(S − a2)

where ai is the value allocated to the i-th agent and S is the total sum. This expression is maximized

when a1 =
S
2 .

We will start the chapter showing that the greedy algorithm achieves a bounded competitive

ratio. Through this we will see the connection of NSW with EF1 and we will use a result from

Barman et al. [2018]. Then we will closely examine the difficulties encountered by any deterministic

algorithm when facing with this problem and will study the connection of this problem with the

function x1/x. We will be able to find lower bounds on the performance of any randomized algorithms

using the previously discussed. Finally we propose a randomized algorithm to break the lower bound

of the deterministic algorithms.

3.1 Greedy algorithm

Algorithm 1: Greedy

1 Given any deterministic tie-breaking rule
2 Initialize X1, . . . , Xn = ∅
3 for t = 1, 2, . . . , T do
4 Item gt arrives ;
5 Find the least satisfied agent j = argmini∈[n] vi(Xi);

6 Xj = Xj ∪ {gt} ;

7 end

The greedy algorithm 1 looks as a very naive algorithm. We will show that it has a tight

competitive ratio of e1/e. Not only this but it is easy to show that it is EF1, a desirable property.

21
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We will in fact show that any EF1 has a competitive ratio of at least e1/e so the greedy is optimal

in this class of algorithms.

We begin seeing the aforementioned EF1 property:

Lemma 3. At each stage of the greedy procedure of Algorithm 1, the allocation is EF1.

Proof. We prove the result by induction on the arriving items t. For t ≤ n, each agent has been

allocated at most one item and is thus trivially EF1 by removal of this item. Now, for t > n, assume

that the allocation up to round t − 1 is EF1 and, towards contradiction, that at round t it is not

EF1. Since the allocation is not EF1, there exists two agents i, j ∈ [n] such that

v
(
Xt

i

)
< v

(
Xt

j \ g
)
for any g ∈ Xt

j .

If at round t, the arriving item, gt, was not assigned to this envied agent, then the allocation was

not EF1 at t− 1. Thus, we assume gt is assigned to j and in the previous round, we had:

v
(
Xt−1

i

)
≥ v

(
Xt−1

j

)
= v

(
Xt−1

j

)
.

This further implies that after allocation the t-th item,

v
(
Xt

i

)
≥ v

(
Xt

j \ gt
)

which implies the allocation is EF1. Contradiction. �

This property will imply the e1/e upper bound on the competitive ratio as shown by Barman et

al. [2018]. We will define ϵ− EF1 for citing the result properly:

Definition 5 (ε-Envy-Free up to One Item (ε-EF1)). Given any ε > 0, an allocation is said to be

ε-approximately envy-free up to one good (ε-EF1) if for every pair of agents i, j ∈ [n], there

exists a good g ∈ Xj such that (1 + ε)vi(Xi) ≥ vi(Xj \ g).

Based on this definition, we recall the following lemma:

Lemma 4. From Barman et al. [2018] under identical valuations, any ε-EF1 allocation provides a

e(1+ε)/e-approximation to the offline optimal NSW.

We now obtain our main upper bound approximate result.

Lemma 5. At each stage of the allocation procedure, Algorithm 1 maintains an allocation that is

at most e1/e-approximate.

Proof. As proven in Lemma 3, Algorithm 1 is EF1. Thus, by application of Lemma 4 with ε → 0

we have the result. �

Once we have seen the upper bound we can see that it is matched by a lower bound that also

applies to all EF1 algorithms. The idea behind the proof of the following lemma is that by always
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maintaining a very similar utility for all agents the algorithm can not react properly when a bunch

of high-valued items arrive. We will see that this kind of problems arise not only on the EF1

algorithms but in all deterministic algorithms in the following section.

Lemma 6. For any ϵ > 0, there exists an adversarial online input stream such that Algorithm

1 (and any algorithm that is maintains the EF1 property) returns an allocation that is at least

(e1/e − ϵ)-approximate.

Proof. We first define a rational approximation of the universal constant e: let p, q ∈ Z be coprime

such that |p/q−e| ≤ δ for δ > 0. We now consider a problem instance with p agents and pq+(p−q)

arriving items to be allocated whose value at time t is given by

v(gt) =

1
q for t ≤ pq

c else

for some constant c > 0. Consider c large enough to singularly satisfy an agent (ie. the optimal

offline solution allocates items with value c as a singleton). Thus, p− q agents receive such an item

and have value c for their allocation bundle.

In the offline optimal allocation, the first pq items of value 1/q will be distributed uniformly

across the remaining q agents. Thus, the optimal Nash social welfare for this instance is given by

NSWopt =

(
c(p−q)

(
p

q

)q)1/p

We now proceed by computing the Nash social welfare of the allocation Algorithm 1 yields.

Most crucially, since the algorithm has no information on the later arriving “large enough” items,

it must uniformly distribute the first pq items across the agents.

Claim 3. Any EF1 allocation must uniformly distribute the first pq items across the agents.

Proof. Suppose not. After the first t = pq rounds, by the given item values, we must have∑
i∈[p]

v(Xt
i ) = pq

and by assumption, there exists agents i ̸= j such that |Xt
i | ̸= |Xt

j |. If the two bundles differ by

more than two, then the allocation cannot be EF1 – so we proceed in assuming |Xt
i | − |Xt

j | ≤ 1 for

any i, j ∈ [p]. Thus, at the given round, we must have the invariant(
min
i

|Xt
i |
)
x1 +

(
max

j
|Xt

j |
)
x2 = pq

where x1 + x2 = p segregates the agents into those with smaller versus the larger bundle sizes. The
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invariant can be rewritten as(
min
i

|Xt
i |
)
x1 +

(
min
i

|Xt
i |+ 1

)
x2 = pq

⇐⇒ (x1 + x2)min
i

|Xt
i |+ x2 = pq

⇐⇒ x2 ≡ 0 (mod p)

a contradiction since x2 < p. Thus, all allocation bundles must have equal size at round pq. �

The above claim verifies that Algorithm 1 must uniformly distribute the first pq items of smaller

value across the agents. We can further see that the following p − q items of large value must be

distributed evenly to ensure an EF1 allocation. Therefore, the Nash social welfare of the allocation

induced by the algorithm will be

NSWAlg =
(
(1 + c)p−q

)1/p
.

We can now compute the competitive ratio as compared to the optimum to be

NSWOpt

NSWAlg
=

(
1 +

1

c

)−(1−q/p)(p

q

)q/p

→
(
p

q

)q/p

≈ e1/e,

where we take c → ∞ for getting an arbitrarily close to e1/e ratio. �

We can summarize the results of this section in the following theorem:

Theorem 5. In the identical value setting and online adversarial input, greedy Algorithm 1 achieves

the competitive ratio of e1/e ≈ 1.4447.

Proof. Follows from Lemmas 5 and 6. �

3.2 Lower bound on deterministic algorithm

We will now derive a lower bound on any deterministic algorithm. The input that will prove this

bound is similar to the one used for the greedy algorithm in the sense that it exploits the algorithm

allocating “too evenly” some items. Since we are not restricted to EF1 algorithms this “too evenly”

will be more loose and will give a ratio slightly smaller.

We present a lemma before the lower bound proof.

Lemma 7. Given an integer n, let P = (a1, ..., as) ∈ Ns partition the integer into a any number of

chunks s such that
∑

i∈[s] ai = n. Consider MP =
∏

i∈[n] ai and let Mn denote the maximum value

of MP through all possible partitions of n = 3k+ r, 0 ≤ r ≤ 2 and Sn the number of chunks in such

partition. Then:

1. Mn = 3k for r = 0
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2. Mn = 4 · 3k−1 for r = 1

3. Mn = 2 · 3k for r = 2

Proof. Suppose that we have an optimal partition x1 ≥ . . . ≥ xs ≥ 0 that maximizes the product

and has the lowest number of xi = 4 through all partitions that maximize the product. If xi ≥ 4

for some i, we can divide xi into 2 and xi − 2 and we have 2(xi − 2) ≥ xi which contradicts the

optimality.

If xi = 1 for some i, then removing xi and constructing x′j = xi+1 increases the product. Therefore,

the optimal allocation should consist of only size 2 and 3 chunks. Since 23 < 32 and 2 · 3 = 3 · 2,
the optimal allocation should have as smaller number of 2 sized chunks as possible.

Hence in case of n = 3k, we have optimal partition of (3, 3, . . . , 3). For n = 3k + 1, we can divide

n into n = 3k + 1 = 2 · 2 + 3 · (k − 1) and for n = 3k + 2, we have n = 3k + 2 = 1 · 2 + 3 · k. This

completes the proof. �

Remark 1. Here we see the first connection with the function x1/x. Let’s consider a relaxation of the

previous problem where the ai are in R instead of in N. Then if we use s chunks the optimal partition

will have ai =
n
s , which follows from AM-GM inequality. Hence we are left to maximize (ns )

s. If

we drop the assumption that s is an integer we can rewrite the function as (ns )
s = xn/x = (x1/x)n

where x := n
s . This maximum is reached at x = e obtaining en/e, that is a good approximation of

Mn but with a greater value due the relaxation. Note that this matches the lower bound seen in the

previous section.

With the previous lemma we can prove the result of this section, a lower bound on any deter-

ministic algorithm.

Theorem 6. Given n agents, in the identical value setting, the competitive ratio of any deterministic

algorithm is lower bounded by (Mn)
1/n, which is at most 31/3 ≈ 1.4422, that is also the limit when

n → ∞ and the exact value for all n = 3k.

Proof. Consider the adversarial construction where m = k + n where k is set so n − k = Sn. The

adversary selects the value of the arriving goods to be

vt =

1 for 0 < t ≤ n

M for n < t ≤ n+ k

where M is sufficiently large. The optimal allocation, denoted as OPT, will allocate the large

items as singletons and distribute the remaining 1 valued items across the remaining agents. This

distribution will be exactly the one of Lemma 7 that yields:

NSW(OPT) ≥
(
MkMn

)1/n
.

To upperbound the objective value of any online algorithm, we prove the following claim:
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Claim 4. Any online algorithm with a CR < ∞ will allocate the first n items to the n different

agents.

Proof. For any number of items m suppose consider a sequence of items with valuations {vi} where

vi = 0 for i > n and vi > 0 for i ≤ n. If the first n items are not allocated evenly the competitive

ratio is ∞. �

From the previous claim we know that at the end of the first n items each agent will have

allocated a value of 1. Then the best possible NSW will be NSWAlg = (1 + M)k/n. Thus the

competitive ratio will be NSWOpt
NSWAlg

= (( M
1+M )kMn)

1/n, taking M → ∞ we get the desired result. �

Note that this sets a lower bound of 31/3 ≈ 1.4422 and that the greedy has a competitive ratio

of e1/e ≈ 1.4447. This result is almost tight and is connected through the function f(x) = x1/x that

we discuss in the next section. We see that they are very near as 3 and e are near and the values

are just f(3) and f(e).

3.2.1 The function exp(lnx/x)

We have already seen in remark 1 how this function connects with the partition of numbers. We

have also seen in the greedy algorithm how we can exploit the EF1 property to get partitions

arbitrarily big that set a competitive ratio arbitrarily near the e1/e that we get in the continuous

case.

If we examine closer the proof of lemma 6 we see that for n agents we can get a lower bound on

the performance of the greedy algorithm of ( n
m)m/n for m ∈ N,m ≥ n. For n big enough this allows

any approximation of e1/e setting m = ⌊n/e⌋. But consider the cases n = 2, 3, 4. We can get 21/2

for n = 2, 4 and 31/3 for n = 3 as the best approximations, that match the bounds that we have for

any deterministic algorithm. This hints that the greedy might be optimal in this settings, and this

is in fact the case as we show in the next theorem. Although the proofs are a bit long, the flavour

and technique of the proof is set in the simple case of n = 2.

Theorem 7. Given n < 5, in the identical value setting under an online adversarial input, Algo-

rithm 1 achieves the optimal competitive ratio of M
1/n
n , which is n1/n for n < 5.

Proof. Without loss of generality, we can assume that the sum of the values of all items is 1 and

that the biggest item has a value of B. This does not decrease any generality as NSW is invariant

over multiplicative scaling. Now we separately argue for the cases when n is 2, 3, 4.

Case 1 (n = 2) Let the final utility of agent 1 and 2 be x and 1 − x, respectively, such that

x ≥ 1 − x. Since the greedy algorithm induces an EF1 allocation, their difference should satisfy

|x − (1 − x)| ≤ B. Given this constraint, the global minimum of x(1 − x) is achieved when

|x− (1− x)| = B, and thus we obtain

NSWAlg ≥
√

x(1− x) ≥
√

1−B

2

1 +B

2
.
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By the inequality of arithmetic mean and geometric mean (AM-GM), we have

NSWOpt ≤
√
y(1− y) ≤ 1

2
.

Now it suffices to show that 1/2√
1−B
2

1+B
2

= 1√
1−B2

≤
√
2. Rearranging the inequality, this is equivalent

to B ≤
√
2
2 . Hence, the argument above concludes that the algorithm achieves the optimal compet-

itive ratio when B ≤
√
2
2 . Suppose now that B ≥

√
2
2 ≥ 1/2. In this case the optimal allocation is to

allocate B to one agent and the rest of items to the other. This induces NSWOpt =
√

B(1−B).

The competitive ratio would be

CR ≤
√
B(1−B)√
1−B
2

1+B
2

≤
√
2,

where the last inequality follows from the fact that it is equivalent to (B− 1)2 ≥ 0. This completes

the proof.

Case 2 (n = 3) The overall proof structure is similar to that of case 1. Given the constraint

induced by the fact that the greedy algorithm is EF1 and the biggest item has a value of B, the

minimum NSW of the greedy algorithm can be obtained by solving the following optimization

problem.

minimize
a, b, c

abc

subject to a+ b+ c = 1,

0 ≤ a ≤ b ≤ c,

c− a ≤ B

Suppose that B ≤ 1
3 . We know that the solution of the problem should satisfy c−a = B. Otherwise,

we could take a − ϵ, c + ϵ for sufficiently small ϵ and obtain smaller value. Then the optimization

problem can be reduced to:

minimize
a, b, c

ab(a+B)

subject to 2a+ b = 1−B,

0 ≤ a ≤ b,

b− a ≤ B

By similar argument as above, we should have b = 1 − B − 2a, and then it is easy to see that the

minimum value will be obtained when the derivative with respect to only a becomes zero or at the

boundary point of the constraint, i.e. when b = B+a, b = a, or if the derivative vanishes. Consider
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a cubic function f(x) = x(1−B − 2x)(x+B). Note that plugging x = 1−2B
3 and x = 1−B

3 induces

NSWAlg for the cases when b = B = a and b = a, respectively. Differentiating with respect to

x, we have f ′(x) = −6x2 + (2 − 6B)x + B − B2. Note that f ′(x) has only one positive root at

x0 = 1
6(1 − 3B +

√
1 + 3B2). It is easy to observe that x0 lies in [1−2B

3 , 1−B
3 ]. Since such x0 is

the inflection point of f(x) and f ′(x) does not have any other root in the interval [1−2B
3 , 1−B

3 ], we

conclude that the minimum of f(x) does not belong to the interval [1−2B
3 , 1−B

3 ]. This implies that it

suffices to show that the competitive ratio is bounded above by 31/3 when b = a or when b = B+a.

If b = B + a, then we have a = 1−2B
3 , and NSWAlg = 1−2B

3 (1+B
3 )2. Otherwise if b = a, then we

have a = b = 1−B
3 , and it results in NSWAlg = (1−B

3 )2(1+2B
3 ).

First, consider the case b = B + a. Due to AM-GM, the NSW of the optimal offline allocation

is bounded above by 1/3. Now it suffices to show the following.

NSWOpt

NSWAlg
≤

1
3

(1−2B
3 (1+B

3 )2)
1
3

≤ 3
1
3 .

By rearranging the inequality, this is equivalent to 3(1 − 2B)(1 + B)2 ≥ 1. Define g(x) = 3(1 −
2x)(1 + x)2 − 1, we can easily check that it is decreasing on [0, 13 ]. Since g(13) > 0, this completes

the proof when B ≤ 1
3 . For case b = a, it is easy to see that similar argument concludes that the

competitive ratio is at most 31/3.

Now suppose that B > 1
3 . The optimal offline allocation will be to allocate the biggest item

with B to one agent and do not allocate more items to him. Scale up the problem instances so

that the summation of the valuations of all the items except the biggest one is 1. Note that this is

without loss of generality again due to the scale invariance of the NSW. In this case, the biggest

item has value B′ > 1
3 . Let the value of the second biggest item be S. Following the same argument

of case 1, the optimal offline allocation would result in a partition of (B′, 1/2, 1/2). The greedy

algorithm will induce an allocation of which the NSW is lower bounded by the solution of the

following optimization problem.

minimize
a, b, c

abc

subject to a+ b+ c = 1 +B′,

0 ≤ a ≤ b ≤ c,

c− a ≤ B,

b− a ≤ S

Note that the last constraint follows from the EF1 property of the greedy algorithm. Using the

similar arguments as previous, we have c − a = B′ at the optimum. In this case, the competitive
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ratio can be obtained as

NSWOpt

NSWAlg
≤

(
B′ · 1

4

ab(a+B′)

) 1
3

≤
(

1

4ab

) 1
3

.

Suppose that S ≤ 1
2 . Then, the solution of the optimization problem above can be obtained when

b− a = S. In this case, we have a = 1−S
3 , b = 1+2S

3 . Hence, we conclude that

NSWOpt

NSWAlg
≤
(

9

4(1− S)(1 + 2S)

) 1
3

.

To conclude that RHS is upper bounded by (13)
1
3 , by rearranging the inequality it is equivalent to

show that 8S2 − 4S − 1 ≤ 0, which is true for S ≤ 1
2 .

On the other hand, suppose that S > 1
2 . In this case, the optimal allocation will be (B,S, 1 −

S). Using the similar arguments as we previously discussed, the NSW of the greedy algorithm is

lower bounded by that of the the case where a = 1−S
3 , b = 1+2S

3 . Then, it suffices to show that
9(S)(1−S)

(1−S)(1+2S) ≤ 3. Rearranging the inequality, this is equivalent to S2 − 2S + 1 ≥ 0, which is always

true. This completes the proof for case n = 3.

Case 3 (n = 4) Suppose that M < 1
4 . Then, the NSW of the greedy algorithm is lower bounded

by the optimum of the following optimization problem:

minimize
a, b, c, d

abcd

subject to a+ b+ c+ d = 1,

0 ≤ a ≤ b ≤ c ≤ d,

d− a ≤ B

Similarly from case 2 analysis, it is straightforward to check that d = a + B and c = d or b = a,

and that the minimum point of the resulting optimization problem does not have its optimum

in the interior point. This again implies that the minimum value of NSW will be achieved by

(x, x + M,x + M,x + M) for x = (1 − 3M)/4, (x, x, x + M,x + M) for x = (1 − 2M)/4 or

(x, x, x, x + M) for x = (1 − M)/4. Note that the optimal offline allocation has NSW of 1/4 by

the allocation (1/4, 1/4, 1/4, 1/4). Repeating the similar process as in case 2, when M ≤ 1/4, we

can easily conclude that the competitive ratio is at most
√
2. Suppose that M > 1/4. Then this

large-valued item has to be allocated alone in any optimal offline allocation. Denote the value of the

second biggest item by N . Without loss of generality, assume that the total sum of values over the

items is 1 + M . Obviously the optimal offline allocation is (M, 1/3, 1/3, 1/3). The worst possible

allocation that may come from the greedy algorithm is (x+M,x+N, x+N, x) or (x+M,x+N, x, x)
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for the x that makes the sum of values equal 1+M . Note that the competitive ratio is an increasing

function over M . Thus it suffices to show that both ( 1
33( 1−2N

4
+N)2 1−2N

4

)1/4 and ( 1
33( 1−N

4
+N)( 1−N

4
)2
)1/4

are upper bounded by
√
2. Followed by some elementary level calculations, we can easily argue that

these quantities are upper bounded by
√
2 for N ≤ 1/3. Suppose that N > 1/3. Without loss of

generality, we can scale all the values so that the sum of item values are 1+M +N where there are

two big items of M ′ > M and N ′ > N > 1/3. In this case, the optimal offline allocation again will

be (M ′, N ′, 1/2, 1/2). Denote by S the value of third biggest item. By repeating similar arguments

as previous, we can easily argue that the NSW of the greedy algorithm is lower bounded by the

allocation (M ′ + x,N ′ + x, S + x, x) for x = (1 − S)/4. Again as the competitive ratio over this

allocation and the optimal offline allocation of (M ′, N ′, 1/2, 1/2) is an increasing function over both

M ′ and N ′, the competitive ratio of the greedy algorithm is eventually upper bounded by the case

when M ′ and N ′ goes to ∞, which results in

NSWOpt

NSWAlg
≤
(

16

22(1− S)(1 + 3S)

)1/4

,

and we want to show that this quantity is bounded above by
√
2. By rearranging the inequality,

this is equivalent to −3S2+2S ≥ 0, and this is true for S ∈ [0, 2/3]. Finally, suppose that S > 2/3,

then S ≥ 1/2. Again by scaling the problem instance, suppose that the optimal offline allocation

is achieved at (M,N,S, 1). Similar argument leads us to conclude that the worst possible greedy

allocation is (M + 1/4, N + 1/4, S + 1/4, 1/4), which gives us the competitive ratio of
√
2, and

this completes the proof. We finally note that the bound is tight only if there exists two or three

large-valued items, which is consistent with our worst-case instance in the lower bound. �

The previous theorem proves that in the family of deterministic algorithms we can have EF1

and optimal NSW maximization under a low number of agents. This is not obvious for n > 4

and can not be deduced from our work here, as we would need to improve our lower bound (that

might be optimal). For completion we note that the previous result can not be extended for n = 5.

Indeed, consider an instance such that 10 items with value 1 arrives, and then 3 items with value

x arrive. By making x sufficiently large, the competitive ratio of the algorithm becomes close to

(52)
2/5, which is strictly larger than 61/5.

3.3 Small items case

In the previous proof we mainly used one idea: if we know the largest valuation we can bound

from below the NSW of the greedy algorithm. This allows us ensure good competitive ratios if this

largest item is small enough.

Note that the worst cases of the online greedy and the lower bounds on the competitive ratio

are met in the presence of big items that are valued infinitely more than the rest of items. This

is indeed not the expected case in a real world situation. This pushes us to consider the greedy

algorithm under the assumption that no item is valued too much. Namely, the valuation V of any
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item is smaller than fT where T is the sum of all valuations and f ∈ [0, 1] is a parameter that

constraints how large can the largest item be. In this setting we can derive an upper bound on the

competitive ratio.

Theorem 8. In the equal valuations setting under adversarial input, if for all every item I we have

v(I) ≤ fT where T is the sum of valuations and f ∈ (0, 1
n) we have that the competitive ratio of the

greedy algorithm is at most (
√
1− fn+ nf/2)−1.

Proof. Without lose of generality take T = 1. As in the previous proof we will use the fact that

under equal valuations the total allocated value by the greedy to two different agents differs at most

the value of the greatest item. Then in the final allocations of items if vi is the value for the i-th

agent for all i, j we have |vi − vj | ≤ f .

We will suppose that the optimal allocation gets the maximum possible value NSWOpt = 1/n

when vi = 1/n for all i and we will see which is the minimum possible value of NSWAlg = (vi)
1/n

under the condition
∑

vi = 1 and |vi − vj | ≤ f . Note that if f ≥ 1
n−1 the allocation v1 = 0 and

vi =
1

n−1 for i ̸= 1 gets a NSW of 0.

Let x be the minimum received utility through all agents. Now in the worst case we have that

vi ∈ {x, x + f} for all but at most one agent. If for i ̸= j we had vi, vj ∈ (x, x + f) we could take

v′i = vi + ϵ, v′i = vi − ϵ for an small enough ϵ obtaining an smaller NSW. Then we can assume that

we have l small agents with utility x, n− l−1 big agents with utility x+f and one agent with utility

y = λx+ (1− λ)(x+ f) for some λ ∈ [0, 1]. If we loose our condition to have l ∈ [1, n− 1] instead

of l ∈ [n − 1] we can assert that λ is either 0 or 1 and then we can suppose that we have l small

and n − l agents. We see this because setting l′ = l + λ gets an smaller NSW: xl(x + f)n−l−1y ≥
xl+1(x+f)n−(l+λ)−1 ⇐⇒ λx+(1−λ)(x+f) ≥ xλ(x+f)1−λ. The former is true because it is true

for f = 0 and taking derivatives on f we have that (1−λ) ≥ (1−λ)xλ(x+f)−λ ⇐⇒ (x+f)λ ≥ xλ

that is true since λ ≥ 0.

We can now relate x and l using that the total utility is 1. For simplicity we say that there

are l big agents and n − l small agents. Then x(n − l) + (x + f)l = 1 =⇒ x = 1−fl
n . Then

NSWAlg ≥
(
(1−fl

n )n−l(1+f(n−l)
n )l

) 1
n
= (1−fl)

n

(
1 + fn

1−fl

)l/n
. Now we will bound the former using

the Taylor expansion of (1 + x)λ, using the following claim:

Claim 5. For x ≥ 0 and 0 ≤ λ ≤ 1 we have (1 + x)λ ≥ 1 + xλ+ x2λ(λ− 1)/2

Proof of the Claim. Call L(x) to the LHS of the inequality and R(x) to the RHS. We have that

L(0) = R(0) thus it is enough to see L′(x) ≥ R′(x) for x ≥ 0. L′(x) = λ(1 + x)λ−1 and R′(x) =

λ + xλ(λ − 1). Since L′(0) = R′(0) it is enough to see that L′′(x) ≥ R′′(0) for x ≥ 0. We

have L′′(x) = λ(λ − 1)(1 + x)λ−2 and R′′(x) = λ(λ − 1). Using that λ(λ − 1) < 0 we have

L′′(x) ≥ R′′(x) ⇐⇒ (1 + x)λ−2 ≤ 1 that is true. �

Using the claim we have NSWAlg ≥ 1−fl
n (1 + fn

1−fl
l
n + (fn)2

(1−fl)2
l/n(l/n−1)

2 ) = 1
n(1 +

f2l(l−n)
2(1−fl) ). We

are left to minimize g(l) = l(l−n)
1−fl . Taking the derivative we find the minimum at l = 1−

√
1−fn
f .

Substituting we get that NSWAlg ≥ 1
n(
√
1− fn+ nf/2) and then the CR ≤ (

√
1− fn+ nf/2)−1
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�

Remark 2. The worst case used in the previous proof can be reached. Just begin with a lot of small

items (so in the online setting it is possible to get the 1/n NSW ) and then receive the items valued

fT . Thus the given value would be the exact competitive ratio if it was not because of the Taylor

approximation.

This last theorem bound seems a bit difficult to contextualize. We get some insight on the next

corollary, observing that making nf constant simplifies the expression.

Corollary 1. When f ≤ 1
kn for a k ≥ 1 we can assert a competitive ratio of at most (

√
1− 1

k +
1
2k )

−1.

Proof. Substitute f = 1
kn in the previous theorem bound. �

For example, the previous corollary with k = 2 (impose that no item has more than 1/(2n) of

the total utility) asserts a competitive ratio of at most 4
1+2

√
2
≈ 1.044 much lower than the ≈ 1.442

general bound.

3.4 The intrinsic difficulty

In the lower bound proof of Theorem 6 we used that any deterministic algorithm has to allocate

the first n items to different agents if it does not lack from a infinite competitive ratio, creating a

distribution of the allocated values that is too “flat”.

We want to emphasize that this problem about the “shape” of the distribution of the allocated

values is absolutely central in the design of any algorithm for this problem. Let see the importance

of this distribution.

Consider an algorithm that has received a set of items S and allocated a total utility of ai to

agent i and suppose that ai ≥ ai+1 and
∑

ai = 1. Now we consider the arrival of b ∈ [0, n− 1] big

items with value X that we will take arbitrarily large. As in the proofs of the previous lower bounds

this enormous objects make insignificant the previously allocated value of the agent that they are

allocated to. Suppose that we receive b = n− l of this big objects. Call P (S, l) to the optimum allo-

cation of the items in S to l different agents in order to maximize the multiplication of the allocated

values. Then we have that NSWOpt = (P (S, l)Xn−l)1/n and NSWAlg =
∏l

i=1 ai
∏n

i=l+1(X+ai)
1/n.

Taking X → ∞ we have that CR(l) = NSWOpt
NSWAlg

=
(

P (S,l)∏l
i=1 ai

)1/n
. If we suppose that P (S, l) can take

the optimal value of (1l )
l and we want to have a competitive ratio of at most c we need that for all

l ∈ [n]:

CR(l) =

(
(1l )

l∏l
i=1 ai

)1/n

≤ c ⇐⇒
l∏

i=1

ai ≥
(1l )

l

cn
⇐⇒

l∑
i=1

log ai ≥ −l log l − n log c
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. Unluckily this system of inequalities is not linear so we can not use the same techniques we saw

in Section 1.3.1 to obtain an optimal distribution of ai and an optimal c. We discuss a couple of

simple examples for understanding the hardness of the problem before solving the problem:

We already saw in the lower bound results section the problem with a flat distribution. Take ai =

1
n it is optimum for l = 0 and good for small l. But if we take l = ⌊ne ⌋ we get c ≳

(
( e
n
)n/e

(1/n)n/e

)1/n

= e1/e

when n → ∞, that is not optimal as we shall see.

In the other hand we can take a non-flat distribution to make sure that we have utility allocated in

the first ai so we do not run in the previous problem. But in this case we might end with an allocation

that has a poor geometric mean of all the ai together. Take for example a geometrically decreasing

distribution ai = e−ti et−1
et−e−tn for t > 0. In this case taking l = 0 we get c ≥ 1/n

(
∏n

i=1 e
−ti et−1

et−e−tn )1/n
=

et−e−tn

et−1
e(n+1)t/2

n that gets arbitrarily big when n → ∞.

3.4.1 Optimal distribution

Before jumping to the problem let’s fix some notation. We are interested in the next optimization

problem:

minimize c

subject to Ai : −
i∑

j=1

log aj − i log i ≤ n log c ∀i ∈ [n],

n∑
i=1

ai = 1,

ai ≥ ai+1 ≥ 0 ∀i ∈ [n− 1]

We can find an approximated solution with an iterative method, that will hint us to an analytical

solution of the problem. For doing so we initialize the ai at random and we run iterations where

we calculate the value of each LHS of the Ai conditions. If j is the argmaxi LHS(Ai) we make an

update a′j = aj + ϵ− ϵ/n and a′i = aj − ϵ/n for an small ϵ this will decrease the LHS(Ai) as we are

allocating more utility to the agent ai. Making this updates iteratively we expect to converge to

the optimal solution (as we will see that happens).The code of this iterative solver can be found on

Appendix A. Some results of the iterative method are in Figure 3.1. We can observe some things

about the numerical solution: the first ai are equal and approximately 2/n and in the point that

the Ai conditions become tight they stop being constant and take a value ≈ 1
ie . We also see that

c ≈ 1.2. We will see how this holds in the following lemmas.

In the following will talk about Ai, ai and c as they are the values in the optimal solution.

Lemma 8. If Ai is tight so is Ai+1.

Proof. For the sake of contradiction suppose Ai : −
∑i

j=1 log aj − i log i = n log c and Ai+1 :

−
∑i+1

j=1 log aj − (i + 1) log(i + 1) < n log c. Subtracting Ai from Ai+1 we get − log ai+1 < (i +
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Figure 3.1: The figures are the numerical results of the iterative optimization problem with n = 50.
We get c = 1.196 and a1 ≈ 2.051/n the values also found in the proofs of the section.
In the left one in red it is the blue c needed to satisfy inequality Ai for each i and in blue the utility
allocated in ai. It can be seen that c stabilises exactly when ai starts to drop. We can also see that
for low i only an small c is needed, this can be expected as a1 will always be at least 1/n by the
pigeonhole principle and n1/n → 1 when n → ∞.
In the left we can look at 1/ai which clues about the distribution of ai. We see that when the ai
start to vary they are almost equal to ei as we shall formally prove.

1) log(i+1)− i log i ⇐⇒ ai+1 > ( i
i+1)

i 1
i+1 . Note that then we can just make a′i+1 = ( i

i+1)
i 1
i+1 that

makes Ai+1 tight. We can add this extra utility to ai+2 and since ai+2 ≤ ai+1 the Aj with j > i+1

will also be satisfied. Since all conditions have stayed equal or improved we can assume that the

statement in true in the optimal solution. �

This implies that there exists an l ∈ [n− 1] such that for all i > l we have that Ai is tight and

that for all i ≤ j Ai is slack. Note that this holds since at least one of the condition is tight, since

if this does not hold c could be reduced. We see that we then calculate the value of ai for i > l.

Lemma 9. If Ai and Ai+1 are tight ai+1 ≈ 1
e(i+1) .

Proof. We have Ai : −
∑i

j=1 log aj − i log i = n log c and Ai+1 : −
∑i+1

j=1 log aj − (i+ 1) log(i+ 1) =

n log c. Subtracting this expressions we get: log ai+1 = i log i − (i + 1) log(i + 1) ⇐⇒ ai+1 =

( i
i+1)

i 1
i+1 ≈ e−1 1

i+1 . We will see that when n → ∞ also holds l → ∞ so the approximation will be

arbitrarily tight for all i > l. �

Then we have derived the value for all the i where the Ai are tight. We will now see that for

the rest of i the value of ai is constant.

Lemma 10. For all i, j ∈ [l] it holds ai = aj.

Proof. Let j be maxi∈[l−1] ai ̸= ai+1. Note that since Aj is slack and aj ̸= aj+1 we can pick an

small enough ϵ and make a′j = aj − ϵ, a′j+1 = aj+1 + ϵ while it still holds a′j ̸= a′j+1 and that A′
j is

still slack. All the Ai with i < j are still slack since we did not change anything. Note now that
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− log aj − log aj+1 ≥ − log a′j − log a′j+1 since − log aj − log aj+1 ≥ − log(aj − ϵ)− log(aj+1+ ϵ) ⇐⇒
log(ajaj+1) ≤ log(ajaj+1 + ϵ(aj − aj+1)− ϵ2) ⇐⇒ ϵ ≤ aj − aj+1 and since aj > aj+1 we can take

ϵ to full fill it. The previous inequality implies that for all i > j the LHS of Ai has decreased. In

particular those inequalities that were tight now they are slack which contradicts the optimality of

the distribution. �

We are only left to determine the values of ai for i ≤ l and l. For doing so we will find the l

that optimizes c, since we shall see in next lemma that the two unknowns are strongly related.

Lemma 11. The first l ≈ n
ee−1 ≈ 0.17n ai are equal with value ≈ ee−2/n ≈ 2.05/n.

Proof. Begin with the condition that we have still not used
∑

ai = 1. we have
∑

ai =
∑

i≤l ai +∑
i>l ai = a1l +

1
e

∑
i>l

1
i = a1l +

Hn−Hl
e where Hn is the n-th harmonic number. Using the

approximation Hn ≈ log n (note that the Euler-Mascheroni constant wipes out as we are subtracting

harmonic numbers) we have: a1l +
log(n/l)

e = 1 =⇒ a1 = 1−log(n/l)/e
l . Note now that Al is

approximately tight (we could do the calculations with Al+1 or An but we take Al for simplicity).

Then we are interested in minimizing

LHS(Al) = la1 − l log l = −l log

(
1− log(n/l)/e

l

)
− l log l = −l log (1− log(n/l)/e)

Taking the derivative we need

−LHS(Al)
′ = log (1− log(n/l)/e) +

1

e− log(n/l)
= 0

Taking n/l = et it simplifies to log(1− t/e) = 1
t−e and it is easy to see that t = e−1 gives a solution

(one can check the uniqueness seeing that it is the only minima for 0 < t < e). Then we have that

n/l = ee−1 =⇒ l = n
ee−1 and a1 =

1−(e−1)/e
n/ee−1 = ee−2

n . �

Corollary 2. The ai with i > l ≈ 0.17n have value ai =
1
ei

Theorem 9. In the optimal distribution we have that c ≈ e1/e
e−1 ≈ 1.196.

Proof. It follows from the previous lemmas. We only have to plug the value of l in Al as seen in

Lemma 11 and we get:

LHS(Al) = − n

ee−1
log(1/e) =

n

ee−1
= n log(c) = RHS(Al) =⇒ c = e1/e

e−1

�

Note that all this sets a fundamental bound: even if an online algorithm has been running for

a lot of time and has been able to allocate the utilities in the best possible distribution, the arrival

of several big items can make the competitive ratio jump to at least 1.196. In the next section we

will see a bound of the cost of allocating the initial items with randomized algorithms that will set

a bigger ratio, as it usually not possible to achieve this optimal distribution.
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3.5 Randomized algorithms

3.5.1 Lower bound

The strong lower bound of 31/3 only applied to deterministic algorithms. In this section we will see

how the same construction can be used to derive a lower bound that also applies to randomized

algorithms. We will use the idea explained in the introduction about seeing random algorithms

as a distribution of deterministic algorithms. This helps us to rephrase the study of the random

algorithms as an study on the distribution in the deterministic algorithms space, that allows us to

find system of linear inequalities to derive lower bounds on the performance.

In the following theorem we use the same input that in the deterministic lower bound: we receive

n items valued equally followed by some number of big items (between none and n−1). We extract

from a random algorithm the probability distribution of the number of agents that received some

item of the first n items. Note that in the deterministic case we knew that every agent should

receive an item.

Theorem 10. In the identical value setting with adversarial input, any (possibly randomized) al-

gorithm has a competitive ratio of at least 1.3692.

Proof. Recall the techniques used in Lemma 1. Consider any algorithm Alg and call {pi}[n] the
probability that it allocates items to i different agents if it receives n items valued at 1 as the first

items. Consider then the competitive ratio that it will get in the set of inputs {Ii}0...n−1 where the

input Ii consists on n items valued at 1 and i arbitrarily large items. Call Ci to the competitive

ratio on input Ii and CAlg to the maximum Ii. Then the competitive ratio of any algorithm is

bounded by the minimum CAlg on all the possible distributions {pi}[n]. In short we are interested

in min{pj}[n]
maxi Ii({pj}[n]).

This optimization problem can be rewritten as an LP problem using the following claim.

Claim 6. In the optimum of the previous optimization problem we have that CAlg = 1
pn

that is the

competitive ratio on the input I0.

Proof. Firstly, rephrase the problem to maximize the inverse of the competitive ratios:

max{pj}[n]
mini 1/Ii({pj}[n]). Note then that for I0 we have that 1/C0 = pn as we if not some agent

will not receive any item the NSW will be 0. For all other inputs Ii for i > 0 inputs allocating

the first items to n − 1 different agents gives a NSW of 21/n times the NSW of allocating them

to the n agents. Suppose now that min 1/Ci < 1/C0 = pn. Then we could set p′n = pn − ϵ and

p′n−1 = p′n−1 + ϵ for an small ϵ > 0 that satisfies p′n > 1/Ci. This operation will improve min 1/Ci.

Then we found a bigger minimum contradicting the fact that the previous algorithm was optimal.

Then we know than min 1/Ci = 1/C0. �

Now we can create an LP problem where we are interested in maximizing 1/C0 = 1/pn with the

restriction that 1/C0 ≤ 1/Ci for all i.

An example with n = 5 can be found on figures 3.2 and 3.3.
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Big items
Agents w/ items

1 2 3 4 5

0 0 0 0 0 1

1 0 0 0 2X X

2 0 0 4X2 2X2 X2

3 0 6X3 4X3 2X3 X3

4 5X4 4X4 3X4 2X4 X4

Figure 3.2: For n = 5 if the value of the big item is X it is shown the maximum possible product
of the utilities for each number of agents receiving some of the first n = 5 1-valued items.

minimize C0 = 1/p5

subject to C1 =
21/5

21/5
p4 +

1

21/5
p5 ≥ p5 = C0,

C2 =
41/5

41/5
p3 +

21/5

41/5
p4 +

1

41/5
p5 ≥ p5 = C0,

C3 =
61/5

61/5
p2 +

41/5

61/5
p3 +

21/5

61/5
p4 +

11/5

61/5
p5 ≥ p5 = C0,

C4 =
51/5

51/5
p1 +

41/5

51/5
p2 +

31/5

51/5
p3 +

21/5

51/5
p4 +

1

51/5
p5 ≥ p5 = C0,

n∑
i=1

pi = 1,

pi ≥ 0 ∀i ∈ [n]

Figure 3.3: System to optimize for n = 5 obtained with the NSW computed with Table 3.2.

This LP can be created and solved for any n with the code provided in Appendix B. Solving it

for n = 1500 gives a lower bound of ≈ 1.3692 on the competitive ratio of any randomized algorithm.

�

3.5.2 A proposal of a randomized algorithm

In this section we use the knowledge found in this chapter to propose a randomized algorithm. We

support it’s convenience through simulations on the achieved competitive ratio versus some selected

inputs. With this we want to provide empirical evidence that there exists a randomized algorithm

that breaks the deterministic lower bound.

We propose a family of algorithms called 2-bucket greedy that their general outline is Algorithm

2. We still have to define what is the distribution {pi} for each n and the function f used to decide

to which bucket to allocate a given item.

The idea of this family of algorithms is to maintain two type of agents. The big and the small
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agents. We allocate the regular items to the “big” agents and we allocate to the “small” agents

only the items with big valuations. With this we try to ensure that our allocation is never too

plain so we can receive big items without getting a bad competitive ratio as we seen in the regular

greedy. But we also use the acceptable good performance of the greedy in two ways. The first is for

allocating the items within the groups. The second is that with a certain probability we will run

the regular greedy. The other probabilities give a certain weight to the different sizes that the big

and small items sets can have, so we can hedge for cases with a lot of big items present or with a

only a few.

Algorithm 2: 2-bucket greedy

1 Pick D ∈ [n] following a given distribution {pi}i∈[n];
2 if D = n then
3 Run the regular greedy algorithm 1;
4 end
5 else
6 Maintain allocations Bi ∈ [D] and Si ∈ [n]\[D] such that v(Bi) > v(Sj)∀i, j.
7 for t = 1, 2, . . . , T do
8 Item gt arrives ;
9 b =

∑
i∈[D] v(Bi)

10 s =
∑

i∈[n]\[D] v(Si)

11 if v(gt) ≥ f(b, s, n) then
12 Allocate item gt greedily in S;
13 end
14 else
15 Allocate item gt greedily in B;
16 end
17 Update S and B in order of maintaining the invariant;

18 end

19 end

We have hence to define {pi} and f . For f we will show results with several different functions,

discussing more in depth the one that gives better results. The main idea will be to use only the sum

of the utilities of one of the groups, weighted by some factor, to compare versus the new arriving

item and deciding by that.

For the distribution we will follow an “inverse” strategy: we will pick the {pi} that minimizes our

competitive ratio. This is possible to do since in our experiments we will have a finite amount of

input cases. But it is acceptable, as we aim to show that it is reasonable to think that a good

randomized algorithm exists. This maximization can be done solving a linear program, similar to

what we did in the previous section for finding a lower bound on the competitive ratio.

The other important decision will be what inputs should we use for computing the competitive

ratio. In order to have meaningful results we need to have strong inputs. The main problem with
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Figure 3.4: Competitive ratio for several agents with several decision functions and options
--perms=500 --approximation, the approximation function approximates the optimal NSW of
some difficult cases giving an upper bound of it, so the CR obtained are also upper bounds. b
stands for the sum of the “big” items and s for the sum of the “small” items. We see that the
function f = se/D gets a significantly better performance than the rest. Most surprisingly with
only 3 agents it is the only algorithm that outperforms the greedy, that in that case we shown to
be optimal for a deterministic algorithm.

this is that given an arbitrary input calculating it’s optimal NSW is a NP-hard problem as we

already discussed. Then we can not just generate a big amount of random cases and expect to have

strong cases, as we would need too much time for calculating the optimal value of each of those

cases. We will then use hand designed cases. We will focus on the inputs that we shown to be the

bad inputs in the lower bounds proofs, alternating small and very big items. We will also use some

other inputs that have closed-form optimum allocations. We will input permutations of all this kind

of inputs in order to get more “cheap” inputs. All the inputs can be checked in the implementation

on Appendix C.

In figure 3.4 we see how picking f = se
D looks like the right decision. Moreover one can also

check that the balance factor e is relevant in the definition. In this algorithm we allocate an item

valued v in the “small” bunch S if v(n− |S|) ≥ e
∑

s∈S v(s). This is, if in the case that each agent

of the other bunch had an item valued v the value allocated in that bunch would be greater to the

total allocated value in S times a normalization constant.
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Figure 3.5: Results of the experiment with options --perms=100 --approximation with the best
function found. We can see how the competitive ratio stabilizes around 1.41 having a significant
better performance than the best possible deterministic algorithm.

We could expect the algorithm to behave just as the greedy most of the times (this is pn ≈ 1)

as it works well in the general case and we only want to hedge the worst cases with the other

cases of the distribution. We can see the distribution in figure 3.6 and the simulation with more

agents in figure 3.5. Looking at this 2 figures it is heavily suggested that our algorithm is capable

of outperforming any deterministic algorithm by choosing the right distribution of D and hedging

with that the bad cases coming from an arrival of unexpected big items.
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Figure 3.6: Distribution of the probabilities on D for different number of agents, f = se/D and
options --perms=100 --approximation. We show the accumulated probability of picking a D
smaller than x, normalized by dividing by the number of agents = n. We can see how the D
smaller than 0.5n have probability near to 0 of being picked. We further see that the D = n that
corresponds to the regular greedy algorithm gets a probability between 0.5 and 0.8, but not more
than that, so the algorithm is effectively using the other values of D for improving the performance
as we have seen in the previous figures. Finally we observe a curious effect where the D ∈ [0.65n, 1n)
are picked with a very low probability, against the intuition that since they are similar to the greedy
algorithm they would be picked more often.



4. Affine utility setting

We here proceed by generalizing the identical setting of Section 3 through affine valuations where

the valuation of an item to each agent is an affine transformation of the base utility function.

Definition 6 (Affine value). Given a base utility function u(·) and constants ai > 0, bi ≥ 0, we

define an affine value setting to be the case in which agent i’s valuation function vi of receiving an

item t satisfies vi({t}) = aiu({t}) + bi.
1

We highlight that the affine utility function is motivated by the existence of a common preference

relation over the items. Consider a scenario in which there exists a preference relation (a total

ordering) over the set of items and all the agents have the same preferences over the items. For

example, while natural resources like gold, silver, and copper may have varying monetary values in

different currencies, the total order of the nations using these currencies is consistent. Namely, even

though the exact valuations for the items can be different for each agent, their valuations are equal

up to the corresponding currency rate, which often is a linear transformation.

It is widely known that if there exists a utility function2 that represents this preference relation,

then it is unique up to the affine transformation Mas-Colell et al. [1995]. This implies that the affine

utility setting is effectively the scenario in which all the agents share a preference relation over the

items.

In this setting, we have a pair of parameters ai, bi for each i ∈ [n] and the algorithm is aware

of these parameters in advance. This restriction is indeed a mild assumption since, even when

(ai, bi)i∈[n] are not revealed in advance, each agent’s exact valuation with respect to the arriving

item is revealed before the algorithm allocates the item in our problem setting. We can thus recover

all the parameters after some initial rounds by solving a system of linear equations. Moreover, we

note that for ai = 1 and bi = 0 we exactly recover the identical valuation setting. This implies that

the obtained lower bounds of Section 3 carry over in this setting as well.

Before presenting our main results, we show that it suffices to consider only the case in which

ai = 1 for all i ∈ [n].

Theorem 11. In the affine value setting, any problem instance with parameters (ai, bi)i∈[n], can be

reduced to the problem instance with (1, b′i)i∈[n].

Proof. We use the fact that the NSW problem is invariant up to scaling of an agent’s valuation

for all items. Given a set of items M and n agents, we scale the i-th agent valuation function vi

(without loss of generality) by some constant factor s > 0. Any allocation, X = {X1, ...Xn}, that
previously obtained valued vi(Xi) for the given agent will now yield s · vi(Xi). The NSW objective

1It is often denoted by cardinal utility function in the literature.
2Precisely, this has to be Von Neumann–Morgenstern utility function to guarantee the uniqueness up to the affine

transformation.
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will correspondingly increase by a factor of s1/n and the competitive ratio of this allocation will

remain unchanged.

NSWOpt

NSWAlg
⇒ s1/nNSWOpt

s1/nNSWAlg
=

NSWOpt

NSWAlg

We can thus multiply every agent’s valuation by 1/ai and the theorem is proven. �

We now present a lower bound result for any deterministic algorithm in an n = 2 agent system

which further implies that randomization is required to guarantee a non-trivial competitive ratio in

expectation.

Theorem 12. In the affine value setting, for any deterministic algorithm and constant M ≥ 1,

there exists a problem instance with n = 2 such that the algorithm has a competitive ratio larger

than M .

Proof. Consider a deterministic algorithm for two agents with (a1, b1) = (1, 1) and (a2, b2) = (1, 0).

We define two problem instances, I1 and I2, both on two items denoted t1 and t2. In I1, the items

arrive with utilities u(t1) = ϵ > 0 and u(t2) = 0 while in I2 the utilities are ϵ and c > 0 respectively.

Since the algorithm is deterministic, its induced allocation must be indifferent for the two problem

instances I1 and I2 at the arrival of the first item. Suppose the algorithm allocates item t1 to the

first agent. If the second item arrives with respect to instance I1, then the NSW of the algorithm

must be 0 and the optimal allocation is revealed to be allocating t1 to agent 2 and t2 to agent 1.

Thus, the algorithm has competitive ratio of
√
ϵ · 1/0 = ∞.

Conversely, suppose that item t1 is allocated to the second agent, and the second item arrives in

correspondence with instance I2. The deterministic algorithm then achieves a NSW of
√

ϵ(c+ 1).

For ϵ sufficiently small and c large enough however, the optimal allocation would be to allocate

t1 to the first agent and the remaining to the second, which yields a NSW of
√
(ϵ+ 1)c. The

corresponding competitive ratio is thus
√

(ϵ+1)c
ϵ(c+1) . For any given M > 1, we take c = 4M2 and

ϵ = 1
4M2 , to obtain

NSWOpt

NSWAlg
=

√
(1 + 4M2) · 4M2

1 + 4M2
= 2M > M.

This implies that the NSW of the algorithm can be arbitrarily large, and we finish the proof. �

We note that this is in stark contrast to the identical setting where the simple greedy algorithm

guarantees a constant competitive ratio in the identical setting. Such a negative result stems from

the fact that a zero-valued item may induce non-zero utility for only a subset of the agents, an added

complexity of the affine utility setting that depends on the bi terms and minimum item value.

This motivates us to parameterize the achievable competitive ratio with respect to (bi)i∈[n]

and the instance minimum item value. Let v = mint∈[T ] u({t}) be the minimum item value and
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b = mini∈[n] bi. We additionally define

B =

∏
i∈[n]

v + bi
v + b

1/n

(4.1)

The following theorem presents that the competitive ratio is upper bounded by e1/e times B

under the affine utility setting.

Theorem 13. In the affine value setting, there exists an algorithm with a competitive ratio at most

Be1/e.

Proof. By Theorem 11, it suffices to consider cases where ai = 1 for all i ∈ [n]. Suppose that each

agent i is equipped with parameters (1, bi) for i ∈ [n]. We consider a greedy-like algorithm in which

we allocates the incoming item to the least satisfied agent, but by assuming that each agent i is

equipped with parameters (1, b), not (1, bi) for i ∈ [n]. Denote this algorithm by Alg1. Given a

problem instance I1 where the agent parameters are given by (1, bi)i∈[n], denote by NSWAlg1,I1

the NSW of the allocation under Alg1 and NSWOpt,I1 the optimal offline NSW. Now consider a

problem instance I2 such that the agent parameters are given by (1, B) for each agent. Denote

by Alg2 the greedy algorithm which allocates the item to the agent with maximal valuation. It is

obvious to see that NSWAlg1,I1 ≥ NSWAlg2,I2 . Moreover, since I2 actually belongs to the identical

setting as bi = B for all i ∈ [n], by Theorem 5 we obtain NSWAlg2,I2 · e1/e ≥ NSWOpt,I2 . Suppose

that the base utility for each item in I1 and I2 is given by xt for t ∈ [T ]. Then, consider a problem

instance I3 such that all the base value xt is scaled-up to be xt

(
v+bi
v+b

)
for t ∈ [T ]. Obviously, we

have NSWOpt,I3 ≥ NSWOpt,I1 since each item at round t has larger (or equal) value in I3 for all

t ∈ [T ]. In addition, we observe that NSWOpt,I3 = NSWOpt,I2

(∏ v+bi
v+b

)1/n
= NSWOpt,I2B since

all the items are multiplied by the same constant factor. Combining the results we obtain

NSWAlg1,I1 ≥ NSWAlg2,I2 ≥ 1

e1/e
NSWOpt,I2

=
1

Be1/e
NSWOpt,I3

≥ 1

Be1/e
NSWOpt,I1 ,

and it completes the proof. �

Note that plugging bi = b yields the upper bound of e1/e, which essentially coincides with

the bound we provide in the identical setting. If v is comparably larger than bi, then we still

approximately have an upper bound of e1/e. In addition, if bi for i ∈ [n] is bounded within a

constant factor ρ from b, then one can easily observe that B is bounded above by ρ, which implies

that the resulting competitive ratio is bounded above by ρe1/e.



5. Bivalue setting

Another natural reduction is to reduce the possibilities of the valuations that an agent can give to

an item. Imagine that agents only tell if they like or dislike each item. In this setting we would

have that vi({t}) ∈ {0, 1} for all agents i and item t (note that from the scaling invariance it is the

same than considering vi({t}) ∈ {0, r} for any r ∈ R+). We call this setting binary for obvious

reasons.

This setting has an easy interpretation: agents either like or dislike and want to maximize the

number of liked items received, not caring about receiving or not disliked items.

In this setting we have already seen in Theorem 3 that we have an exponentially large lower

bound on the competitive ratio depending on the number of agents. Nevertheless we will show that

in when a large number of items are available we can get a positive result that is tight asymptotically,

following the path of Hajiaghayi et al. [2022].

Then we will impose that vi({t}) ∈ {1,m} for m > 1 (for the same reason than before this is

equivalent to vi({t}) ∈ {a, b} for a, b ∈ R+). Note that we expect this to be simpler that the binary

setting as every agent values positively every item. We also have that the binary setting can be

obtained when m → ∞. We will call this setting m-bivalue setting. Here we will focus on a nice

connection with the maximum matching problem that will allow us to derive some lower bounds on

the competitive ratio.

This case diverges from the last one in the sense that the agents are happy about receiving

disliked items, but value them less than the liked items.

5.1 Hardness in the offline setting

The bivalue problem has been studied in the offline setting. In the simpler setting of binary valua-

tions Babaioff et al. [2020] designed an algorithm that runs in polynomial time and maximizes the

NSW. Note that this is much simpler than the general setting that is APX-hard as discussed in

the introduction.

In the other hand in the offline m-bivalue setting Akrami et al. [2021] showed that the problem

is NP -hard and APX-hard. They provide a lower bound on the approximation factor and an

algorithm that reaches a 1.0345-approximation polynomial algorithm. This algorithm finds the

optimal allocation when m ∈ N.

5.2 Binary setting

The exponential bounds when not enough items are present in the binary setting have already been

discussed in Chapter 2. Because of this we only look at the setting where a sufficiently large number

45
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of items arrive, as discussed in the following section.

5.2.1 Large number of items

The exponential lower bound exploits the fact that the NSW is zero if an agent does not get any

positive valued item. In order to overcome this intrinsic hardness, we consider the binary setting

with sufficiently many items – a canonical assumption in the literature (Hajiaghayi et al. [2022]).

Specifically, we show in the following theorem that for a sufficiently large number of items of positive

value for each agent, we can retain a linear competitive ratio bound.

Theorem 14. In the binary value setting, if every agent values positively at least n items the greedy

algorithm has a competitive ratio of at most Θ(n).

Proof. Our main result essentially builds upon the following lemma.

Lemma 12. If an agent positively values k items the greedy algorithm allocates him at least ⌊ kn⌋
items.

Proof of the lemma. Define q := ⌊k/n⌋. We have to prove that after an agent has seen qn items he

has received at least q. By the greedy algorithm if the agent has received r items all other agents

will have received at most r + 1 of those items. Then qn ≤ r + (n − 1)(r + 1). Rearranging the

inequality, this is equivalent to r ≥ (q − 1) + 1
n . This further implies that r ≥ q, since r is an

integer. �

Let ki the number of positively valued items for agent i. From the lemma above, the competitive

ratio will be at most ∏
i∈[n]

ki

⌊kin ⌋

1/n

≤

∏
i∈[n]

2n

1/n

= 2n,

and it finishes the proof. �

We can use the previous Lemma to improve a result in Hajiaghayi et al. [2022]. They deal about

the called online Santa Claus problem. The only difference with our problem is that the objective

is the maximization of the minimum of the values assigned to an agent, instead of the geometric

mean. The following corollary improves the condition stated in the original paper from n log n to n

and improves the dependency on the approximation factor.

Corollary 3 (Improvement over Theorem A.1. in Hajiaghayi et al. [2022]). In the adversarial

setting, there is an algorithm for the online Santa Claus problem that has a competitive ratio of
(q+1)n

q if OPT ≥ qn, where q := ⌊k/n⌋.

Proof. The proof directly follows from Lemma 12 using the greedy algorithm. �
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Remark 3. We note that our construction of the worst-case problem instance that gives us the

exponential lower bound also improves Theorem 1.3 in Hajiaghayi et al. [2022]. More formally, it

states that no online algorithm can obtain a competitive ratio better than O(n), whereas we present

an exponential bound.

We now show that the previous theorem is asymptotically tight, this is that the lower bound

matches the Θ(n) upper bound. This shows that up to a constant the greedy algorithm is optimal.

Theorem 15. In the binary value setting, for any algorithm and any arbitrary function f : N → N,
the competitive ratio is at least Θ(n) even if we assume that every agent values positively at least

f(n) items.

Proof. Consider an input of n rounds where, in round i, a set of (n − i + 1)ki items valued 1 by

agents σ(1), ..., σ(n − i + 1) arrive, where σ is a random permutation of the agents which we will

consider to be the identity (without loss of generality) and the value of ki will be set later. We

invoke the following lemma on the optimal allocation for round i specified above.

Lemma 13. It is optimal to allocate the items evenly between the agents 1 . . . n − t + 1 at round

t. Allocating items evenly between the agents 1 . . . n − t + 1 for every round t gives a (1 + ϵ)

approximation of the optimal CR if the ratio kt+1/kt is big enough for all t.

Before proving this lemma, we show how it is leveraged to verify the theorem. Given this

allocation we do not care about the (1+ϵ) factor since we are dealing with asymptotically behaviour.

Then we have that

NSWAlg =

 n∏
i=1

i∑
j=1

kj

1/n

and for ki+1(n− i) > ki(n− i+ 1) we have that

NSWOpt =

(
n∏

i=1

(n− i+ 1)ki

)1/n

.

Given ϵ > 0, suppose that ki >
∑i−1

j=1 kj
ϵ . This further implies that (n−i+1)ki∑i

j=1 kj
> (n−i+1)

(1+ϵ) and combin-

ing these inequalities yields the competitive ratio bound of NSWOpt
NSWAlg

> (n!)1/n

(1+ϵ) ∈ Θ(n).

We now prove the lemma and complete the result.

Proof of Lemma 13. We will prove the lemma by induction. For t = 0 it is vacuously true. Suppose

that after round t− 1 we have assign the same number of items to each agent in [n− t+ 1] and let

this number be I. We have to see that it is optimal to assign the same number of items in round i

to all of them. Call K := (n− t+ 1)kn−t+1. We can focus on P (i1, ..., it−1) the probability that we

allocate ij items to agent j for 1 ≤ j ≤ t− 1 and K −
∑

j≤t−1
ij to agent t.



48 CHAPTER 5. BIVALUE SETTING

Assume that K < ϵkn−t+2 for an small ϵ > 0. Any agent who receives items this round will get at

most K items and will be able to take at least kn−t+2 in the subsequent round. Furthermore, we

have that

kn−t+2(1 + ϵ) > kn−t+2 +K

. Therefore, any agent that will receive items in later rounds can ignore the items received in this

round and only be off by (1 + ϵ) to his final allocated value. This induces a (1 + ϵ) approximation

on the ultimate NSW and is thus negligible in the asymptotic behavior of the competitive ratio for

a fixed ϵ. We therefore focus on the items received by an agent in this round that will not receive

any in the subsequent. Probabilistically, these agents are all identical so we seek to maximize

∑
i1+···+it=k

P (i1, ..., it−1)
1

t

∑
j≤t−1

(I + ij)
1/n.

The critical point occurs when P (i1, ..., it−1) is identically 1 for the agents that maximize the inner

summation and 0 for the remainder. Lastly, taking partial derivatives of the optimization function,

we have

1

n
(I + ij)

1/n−1 =
1

n

I +K −
∑
l≤t−1

il

1/n−1

for all j ≤ t− 1 and so K −
∑

l≤t−1

il = ij =⇒ ij = K/t = kn−t+1, concluding the proof. �

We can finally conclude the proof of Theorem 15 by bounding k1 > f(n). �

Finally seeing that in the online and offline adversarial models the CR matches with the ones

in Hajiaghayi et al. [2022] problem we conjecture that it also matches in the random order model.

It is stated formally in the following conjecture:

Conjecture 1. In the random order setting, for all ϵ > 0 if we receive more that Ω( logn
ϵ2

) positively

valued items for each agent, there exists an algorithm with CR = (1 + ϵ).

5.3 m-Bivalue setting

In this setting we are interested in seeing how the competitive ratio varies when we parameterize the

problem by m. When m = 1 the competitive ratio is 1 and from the binary setting we know that

the competitive ratio arbitrarily big when we make m big enough. We begin by given a polynomic

lower and upper ratio on the competitive ratio depending on m.

Theorem 16. In the m-bivalue setting under an adversarial input, any online algorithm has a

competitive ratio of at least m5/18.

Proof. For some integer k, consider a problem instance with n = 3k agents and 3k items such that

k items have value 1 for all agents (denote this by type A) and 2k items have value m for only one
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agent (this agent can be different for each item, but each agent will at most value m one item) and

value 1 for the rest of the agents (denote this by type B). For each type B item, the agent who

has value m is chosen randomly and we assume that one agent values m at most one item yielding

NSWOpt = (12kmk)1/(3k) = m2/3.

Now we consider a problem instance where the items are grouped into k bundles comprised of a

type A and two type B with the former item arriving first. Each bundle arrives in sequential manner,

ie. one after another. Suppose now that we inform the algorithm of the two agents who value two

type B items by m and an agent that values all the items by 1 before each batch arrives. Since we

are only adding information to the algorithm, this informed algorithm must have a competitive ratio

at most that of any fully online algorithm. The informed algorithm will thus properly assign the

last two items with probability 1/3, assign only one properly with probability 1/2, and mistakenly

allocate with the remaining probability. As a result, the expected contribution to the geometric

mean for the items in this arriving bundle will be at most (1/6 + (1/2)m1/n + (1/3)m2/n). Given

that each bundles is independent from each other we can use that the multiplication of expected

value is the expected value of the multiplication for independent random variables. This implies

the bound NSWAlg ≤ (1/6 + 1/2m1/n + 1/3m2/n)n/3. Now taking n → ∞ we obtain the bound of

NSWAlg ≤ m7/18, and thus the competitive ratio is at least m2/3

m7/18 = m5/18. �

After this lower bound we see that the naive round-robin algorithm gets competitive ratio of m.

Theorem 17. In the m-bivalue setting, there is an algorithm with a competitive ratio less than or

equal to m.

Proof. Let T = kn+ q be the number of items where n is the number of agents, q < n and k > 0. If

we allocate all items equally to all agents, n− q will receive k items and q will receive k+1. Given

the m-bivalue instance, the optimal offline NSW is upper bounded by the instance where all agents

are allocated an item of value m. In the converse, the worst case online algorithm will allocate each

item to the agents of value 1 for the arriving item. We thus have the competitive ratio bound

NSWOpt

NSWAlg
≤
(
(km)n−q((k + 1)m)q

(k)n−q((k + 1))q

)1/n

= m.

�

Remark 4. It is straightforward to extend Theorem 17 to the setting in which all the items have

value in [x, xm] for some x > 0, instead of {1,m}.

Given this result and the good results that the greedy algorithm achieves in the equal valuations

setting and in the binary setting with a large number of items we might conjecture that the greedy

gets a good performance in this setting as-well. This is not the case as its performance is arbitrarily

close to the round-robin algorithm as stated in the following theorem.

Theorem 18. Given any rational number m and n agents, in the m-bivalue setting, the greedy

algorithm 1 has a competitive ratio of at least m(1− 1/n) + 1/n.
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Proof. Suppose that m = p/q ∈ Q and let vi be an item valued m by agent i and 1 by the

rest. Consider the set of items valued: v1, . . . , v1︸ ︷︷ ︸
p(n−1)+q

, v2, . . . , v2︸ ︷︷ ︸
p(n−1)+q

, . . . , vn, . . . , vn︸ ︷︷ ︸
p(n−1)+q

. Divide the input into

n rounds based on the type of item that we are receiving. We will prove by induction that, after

each round, every agent must have the same allocated value. This is true for i = 0. Assume this

is true until round i. In the following round, the agent i + 1 will receive q items augmenting his

value by p
q · q = p and every other agent will receive p items augmenting their allocated values by

1 · p = p. Thus, the greedy procedure will induce an allocation resulting in NSWAlg = pn. The

optimal offline allocation will give all the items in round i to the corresponding agent, yielding

NSWOpt = (p(n− 1) + q)m. Therefore, our competitive ratio is given by

NSWOpt

NSWAlg
=

(p(n− 1) + q)m

pn
= m(1− 1/n) + 1/n,

which verifies the lower bound. �

After this negative result with the greedy algorithm we will try to focus on a wider class of

algorithms. For deriving more general lower bounds we will look at the scenario where the number

of agents equals the number of items. This case was enough for getting the strong negative results

in the binary case. We will draw inspiration from the online bipartite maximum matching problem

so the next section focuses on a brief introduction to the problem.

5.3.1 Online bipartite maximum matching

A bipartite graph G = (V,E) is one such we can partition V = L⊔R such that all edges are between

an vertex in L and a vertex in R (a condition equivalent to being 2−colorable). A matching of a

graph is a subset of edges M ⊆ E such that for all u, v ∈ M we have u ∩ v = ∅, i.e. there is no

vertex that with two edges. A maximum matching of G is a matching of maximum cardinality

along all matchings of G. Finding a maximum matching in a bipartite graph can be easily done

with a max-flow algorithm. As expected we are interested in the online setting. In this setting we

know from the beginning the vertices on L but the vertices in R appear one at the time with all

their edges. One a vertex of R appears we can match it with an adjacent unmatched vertex of L.

We will further assume that a maximum matching of size n = |L| exists, i.e. all vertices on L can

be matched at the same time.

Let’s now consider the deterministic greedy algorithm for this problem, just assigning a un-

matched adjacent vertex for the arriving vertex, breaking ties by a deterministic tie-breaking pro-

tocol. This algorithm has a competitive ratio of 2.

Lemma 14. In the online bipartite maximum matching problem the deterministic greedy algorithm

achieves a tight competitive ratio of 2 for all even n = |L|.

Proof. Lower bound: consider n = 2 and a graph with L = {1, 2}, R = {3, 4} and E =

{{1, 3}, {2, 3}, {1, 4}}. Suppose that when the tie-breaking protocol picks the edge {1, 3} when
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the vertex 3 appears (if it picks the other substitute edge {1, 4} by edge {2, 4}. Then it will not

match vertex 4 and we will get a CR = 2/1 = 2. Copying this setting n/2 for any even n finish the

lower bound proof.

2

1

4

3

Figure 5.1: Graph the reaches the lower bound for n = 2. The maximum matching is formed by
lime edges but the algorithm only selects the purple edge.

Upper bound: consider any maximum matching M and call the matching obtained by the

algorithm A. For every edge (u, v) = m ∈ M,u ∈ L, v ∈ R at least one of u or v appears in an edge

of A. If that was not the case, when v arrived the algorithm would have picked m to be a part of

A. Then for every edge in M we see a edge in A. Notice that we can see an edge in A by at most

two edges in M , as M is a matching. Then 2|A| ≥ M finishing the proof.

�

One can think that randomizing the greedy might improve the algorithm or even that it the

randomized greedy is the best algorithm. We will now see that neither of those holds. Consider

the greedy algorithm with randomized tie breaking. We will call any random algorithm that only

uses randomness for breaking ties a random tie-breaker, independently each time that it has to

break a tie. Notice that in the lower bound example that we used in previous lemma this algorithm

would get a competitive ratio of 4/3. We will see that this can be worsened to 2 in the following

lemma.

Lemma 15. The randomized greedy has a competitive ratio of 2.

Proof. Lower bound: For n ∈ N consider a graph G = L ⊔ R with |L| = |R| = n taking L = [n].

The i-th vertex of R to arrive will be adjacent to a vertex v of L if v ≥ i (see figure 5.3.1). If we run

the randomized greedy and we call En the expected number of edges in the final matching we have

that En = 1+ 1
nEn−1 +

n−1
n En−2, E0 = 0. The 1 accounts for the edge picked when the first vertex

arrive. If we select vertex i of L, with probability 1/n, after this we will be in the same situation

that we would be if we started with n − 1. If we pick one of the others we will not be able to use

that one nor vertex 1, so we will be in the situation of starting with n− 2 with probability 1− 1
n .

Now we upper bound En.

Claim 7. En ≤ n
2 + Hn

2 where Hn :=
∑

1≤i≤n
1
n the n-th harmonic number.

Proof of Claim. For n = 1 we have E1 = 1 ≤ 1/2+1/2. Let the statement be true for all i < n. Then

En ≤ 1+ 1
n(

n−1
2 +Hn−1

2 )+n−1
n (n−2

2 +Hn−2

2 ) = n2+1
2n + 1

n
Hn−1

2 +n−1
n

Hn−2

2 ≤ n
2+

1
2n+

Hn−1

2 ≤ n
2+

Hn
2 . �
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L4

L3

L2

L1

R1

R2

R3

R4

Figure 5.2: Graph used in the proofs of Lemma 15
and Theorem 19 for n = 4.

Using the claim, that Hn ≈ log n and that the maximum matching has size n we have CRn ≥
n

n/2+Hn/2
≈ 2 1

1+(logn)/n → 2 when n → ∞.

Upper bound: Same proof as previous lemma. �

So randomizing the greedy is not enough. We have to correlate the random decisions taken

by the algorithm to get a better algorithm. This is accomplished by the Ranking algorithm 3

proposed in the classical paper Karp et al. [1990].

This algorithm achieves a competitive ratio of (1 − 1/e)−1 ≈ 1.58 better than the previously

seen 2 competitive ratio. For doing so it randomly chooses a permutation of the vertices of the

offline half of the graph and matches the arriving vertices using the order (or ranking) induced by

the permutation. This implies that the decision in each step is deeply correlated with the previous

decisions. A good proof of the competitive ratio of this algorithm can be found at Birnbaum and

Mathieu [2008].

Algorithm 3: Ranking algorithm

1 Randomly (and uniformly) choose a permutation σ of the vertices in L.
2 When a vertex v of R arrives:
3 Let N(v) the neighbours of v that have not been matched.
4 If N(v) ̸= ∅ match v to the vertex u that minimizes σ(u).

In the next section we show how this problem is connected to our problem in the bivalue setting

and we also derive some bounds and ideas inspired by the exposed in this section.
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5.3.2 Relation with bipartite maximum matching

We will restrict our problem to the case where exactly n items arrive. Then we have a nice relation

with the bipartite maximum matching problem.

We can construct a bipartite in the following way: let the vertices on L (the non-online side) the n

agents and the vertices in R the items that arrive online. An agent a and an item I are connected

if the agent values the item with a value of m (va(I) = m).

Note that when an algorithm allocates items obtaining a non-zero NSW we get a matching in the

previous graph: indeed each item can only be allocated to one agent and if an agent receives more

than one item by the pigeonhole principle an item will have no allocated items inducing NSW = 0.

More than that if the matching has size k the NSW will be (mk)1/n so the objectives transforms

into getting a large matching.

But there are some differences. Given a bipartite graph G, let MG
Alg be the distribution of

the size of the maximum matching, and KG be the size of the offline maximum matching. Then,

the online bipartite matching problem deals with KG/E
[
MG

Alg

]
, this is it only cares about the

expectancy of the maximum matching. In our problem we are more interested in the distribution

of the sizes: Define R = infr{r : [P((KG −MG
Alg)/n ≤ r) ≥ c(r)],∀G}, where c(r) > 0. Then, we

can obtain the competitive ratio of

NSWOpt

NSWAlg
=

mKG/n

mMG
Alg/n

≤ mKG/n

c(R+ ϵ)m(KG−n(R+ϵ))/n
=

mR+ϵ

c(R+ ϵ)
,

for all ϵ > 0 and for all problem instances that corresponds to the bipartite graph G. That said, we

can still carry over the connection to KG/E
[
MG

Alg

]
as stated in the next lemma.

Lemma 16. If KG/E[MG
Alg] ≤ c then R ≥ 1− 1/c.

Proof. We will use the same idea of Markov’s inequality but for bounded by above random variables

as seen in next claim.

Claim 8. Let X be a random variable with X ≤ M a.e. and call E = E [X]. Then for any λ < E

it holds P (X > λ) ≥ E−λ
n−λ

Proof of the claim.

E =

∫
xP (X = x)dx =

∫
x>λ

xP (X = x)dx+

∫
x≤λ

xP (X = x)dx ≤

≤ M

∫
x>λ

P (X = x)dx+ λ

∫
x≤λ

P (X = x)dx = MP (X > λ) + λP (X ≤ λ) =

= MP (X > λ) + λ(1− P (X > λ)) =⇒ P (X > λ) ≥ E − λ

M − λ

�
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Using this we want to see that for any ϵ > 0 if we take r = 1− 1/c+ ϵ we have

P((KG −MG
Alg)/n ≤ r) ≥ c(r) ⇐⇒ P(MG

Alg ≥ KG − nr) ≥ c(r)

Using the claim and the fact that MG
Alg is bounded by KG:

P(MG
Alg ≥ KG − nr) ≥

E
[
MG

Alg

]
−KG + nr

KG −KG + nr
≥ KG/c−KG + nr

nr
= 1−KG

(
1− 1/c

nr

)
≥

≥ 1− 1− 1/c

r
=

ϵ

1− 1/c+ ϵ
= c(r) > 0

. �

There is another difficulty. In the classical bipartite maximum matching if a vertex arrives and

does not have a free neighbour we can just “pass”, don’t match it and go on with the next vertex.

This is not the case in our version. We need to match every item to an agent that will not be able

to receive more items. Then if we receive an item value 1 by all agents without allocated item we

will need to pick an agent and allocate that item to it. This implies that the use of canonical greedy

algorithm with deterministic tie-breaking in the online bipartite maximum matching will not give us

a good competitive ratio. Consider two agents with two vertices, where the first has no neighbours

(value m), and the second has only one neighbour, wherein any algorithm with deterministic tie-

breaking can get a matching of size 0, in comparison with the usual online bipartite matching

case where a deterministic greedy always get at least a matching of half the size of the maximum

matching as we saw in the previous section.

5.3.3 Negative results inspired of random tie-breakers algorithms

We have seen that randomizing the greedy is not enough to derive a better algorithm for the online

bipartite matching. Inspired in this and in the connection explained in the previous section we

derive a very similar result for our problem for any random tie-breaker algorithm. Note that this

algorithms are the ones used in almost all allocation problems.

Theorem 19. In the m-bivalue setting under an adversarial input, any random tie-breaker algo-

rithm has a competitive ratio of at least m1/2−ϵ for all ϵ > 0.

Proof. Consider a set of items [n] such that vi(aj) = 1 if j < i and m otherwise (see figure 5.3.1).

We denote C(n, j) the probability of assigning to j agents an item valued m (and an item valued

at 1 to the rest) in our described instance of n agents following a uniformly random tie-breaking

algorithm. Define Aϵ
n =

∑n
i=n(1+ϵ)/2C(n, i). We want to show that Aϵ

n → 0 as n → ∞, as this

implies that the probability of having the NSW bigger than m1/2+ϵ goes to 0.

Note that C(1, 1) = 1 and C(n, j) = 0 for j < n/2. We know derive a recurrence relation for this

values:

Claim 9. C(n, j) = 1
nC(n− 1, j − 1) + n−1

n C(n− 2, j − 1).
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Proof of the Claim 9. if we pick one agent we have two cases: if the agent is the one that only

valued with m the first item we pass to the case C(n−1, j−1) and this happens with probability 1
n .

In the other case we have to discard two agents as possible receivers of future m valued items: the

one that we assigned the item to and the one that will not be offered any other item that he values

m in the future. This happens with probability 1−1/n and moves us to the case C(n−2, j−1). �

Rewrite Q(n, k) = C(2n− k, n). Note that n ≥ k if Q(n, k) > 0. It suffices to upper bound the

quantity Q(n, k). From Claim 9, we obtain

Q(n, k) = C(2n− k, n)

=
1

2n− k
C(2n− k − 1, n− 1)

+
2n− k − 1

2n− k
C(2n− k − 2, n− 1)

=
1

2n− k
Q(n− 1, k − 1) +

2n− k − 1

2n− k
Q(n− 1, k).

Based on the recurrence relation above, we further use the following claim.

Claim 10. Q(n, k) ≤ 1
k!

(
n
k

)
.

Proof of the Claim 10. To compute the quantity Q(n, k) based on the recurrence relation, in case

n = 1, we need to compute for two cases such that k = 0, 1. Generally, to compute Q(n, k) from

Q(n−1, k−1), we need to iterate recurrence relation k times, since the other term of the recurrence

does not change k. We can then upper bound the value of Q(n, k) counting all the possible orders

of taking the steps of the form (n, k) → (n−1, k) and (n, k) → (n−1, k−1) until we reach (0, 0). A

classical combinatoric’s argument states that there are
(
n
k

)
of doing so. We can then multiply this

number with the path that has the highest probability. It will be less than 1
k! since for taking the

step (n, k) → (n, k − 1) we will have probability 1
2n−k ≤ 1

k ⇐⇒ k ≤ n. �

This implies that

C(n, k) = Q(k, 2k − n) ≤
(

k

2k − n

)
1

(2k − n)!
.
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From the definition of Aϵ
n, we obtain

Aϵ
n ≤

∑
k=n(1+ϵ)

(
k

2k − n

)
1

(2k − n)!

≤ 1

(⌊ϵn⌋)!

n∑
k=n(1+ϵ)/2

(
k

2k − n

)
(a)

≤ 1

(⌊ϵn⌋)!

n∑
k=n(1+ϵ)/2

(
k

⌊k/2⌋

)
(b)

≤ n

(⌊ϵn⌋)!

(
n

⌊n/2⌋

)
(c)

≤ C
n√

ϵn(ϵn/e)ϵn
2n√
n

≤ C ′ (2e)
n

(ϵn)ϵn
,

where we used binomial inequalities in (a) and (b), Stirling’s approximation in (c), and big enough C

and C ′. Therefore, we conclude that Aϵ
n converges to zero as n goes to ∞. This completes the proof

as the probability of getting aNSWAlg > m1/2+ϵ goes to 0 andNSWOpt = m so CR ≤ m1/2−ϵ. �

Remark 5. The previous proof differs to the ones in the bipartite maximum matching because

we needed to show a concentration of the distribution around the mean. This would have been

easier if we showed that the variance of the distribution goes to 0. For doing so it is enough

to define Xi := 1 if agent i is matched and 0 otherwise. Then we would be interested in the

distribution of Y =
∑n

i=1 Xi

n and it would be enough that the covariance of Xi and Xj is ≤ 0 using

that V ar(Y ) =
∑n

i=1 V ar(Xi)+
∑

i ̸=j Cov(Xi, Xj). But it might not be the case that the covariances

are non-positive.

All this hints that an algorithm similar to the already seen Ranking is needed for getting a

better performance in this problem. It would likely get a competitive ratio of m(1−1/e)−1
as we have

seen we expect the distribution being concentrated around the mean.



6. Conclusion

In this study, we have undertaken a comprehensive investigation of the online NSW maximization

problem from various perspectives. Our primary focus has been on determining lower bounds for

the competitive ratio, and we have discovered that it is impossible to achieve good algorithms under

certain general conditions. However, by examining some natural restricted scenarios, we have been

able to identify some positive results.

For instance, in the equal valuations scenario, we have found that the greedy algorithm performs

quite well, with the lower and upper bounds being very close. Similarly, we have demonstrated that

the greedy algorithm is asymptotically tight when we receive a large number of items with binary

valuations. However, in the m-bivalue setting, we have been unable to find a good positive result,

although we have derived lower bounds for a wide range of algorithms. In particular, we have shown

that the greedy algorithm is not effective in this setting.

Given the variety of scenarios we have explored, there are numerous avenues for further research.

For example, we could focus on closing the gap in the equal valuations setting, although this would

require a sophisticated algorithm. Proving that the proposed randomized algorithm, or other,

breaks the deterministic bound would be a big breakthrough. Alternatively, we could attempt to

find a good algorithm for the bivalue setting, perhaps by drawing inspiration from the bipartite

matching problem. Finally, we believe that the most promising direction for future research would

be to investigate bounds and algorithms under the random order arrival model, which is the setting

that best describes real-world situations and has received a lot of attention in similar problems in

recent times. Although we have established some general lower bounds, it would be particularly

interesting to explore the equal valuations and large number of items scenarios in this context.
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A. Code 1

The code of this appendix finds optimal distributions of utilities in the equal valuation settings as

discussed in Section 3.4 and generates the figures 3.1. It uses an iterative numeric algorithm that

converges to the solution proved to be optimal in the aforementioned section.

1 # finding optimal shapes for the NSW online equal valuations problem

2 import math

3 import matplotlib.pyplot as plt

4 import random as rnd

5 import numpy as np

6

7 EPOCHS = 40

8 BATCH_SIZE = 1000

9 INITIAL_EPS = 0.3

10 DIV_EPS = 2

11

12 MIN_N = 50

13 MAX_N = 60

14 N_STEP = 10

15

16

17 def optimal(j):

18 return math.pow(1/j, j)

19

20 def printer(n, ratios, shape):

21 x_ax = [i for i in range(1, n+1)]

22 inv_shape = [1/x for x in shape]

23

24 fig, ax1 = plt.subplots()

25

26 color = 'tab:red'

27 ax1.set_xlabel('Item index (i)')

28 ax1.set_ylabel('c', color=color)

29 ax1.plot(x_ax, ratios, color=color)

30 ax1.tick_params(axis='y', labelcolor=color)

31 x_label = [1] + [i for i in range(10, n+1, 10)]

61
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32 ax1.set_xticks(x_label, x_label)

33

34 ax2 = ax1.twinx()

35

36 color = 'tab:blue'

37 ax2.set_ylabel(r'$a_i$', color=color)

38 ax2.plot(x_ax, shape, color=color)

39 ax2.tick_params(axis='y', labelcolor=color)

40

41 locs = ax2.get_yticks()

42 locs = locs[1:-1]

43 y_label_text = [("%0.2f"%(i*n))+"/n" for i in locs]

44 ax2.set_yticks(locs, y_label_text)

45

46 plt.axvline(n/math.exp(math.e-1), color='purple', ls='--',

label=r'$l=\frac{n}{e^{e-1}}$')↪→

47

48 fig.tightt_layout()

49 plt.legend(loc="lower right")

50 plt.savefig('n' + str(n)+ '_double_curve.png', dpi=300)

51

52 fig, ax1 = plt.subplots()

53 color = 'tab:red'

54 interesting_line = [math.e * i for i in range(2, n)]

55

56 plt.axhline(n/math.exp(math.e-2), color='purple', ls='--',

label=r'$1/a_1=\frac{n}{e^{e-2}}$')↪→

57 ax1.plot(list(range(2, n)), interesting_line, color="green", ls='--',

label=r'$a_i = ei$')↪→

58

59 ax1.set_xlabel('Item index (i)')

60 ax1.set_ylabel(r'$1/a_i$')

61 ax1.plot(x_ax, inv_shape, label="1/a_i")

62

63 locs = ax1.get_yticks()

64 locs = locs[2:-1]

65 y_label_text = [("n/"+"%0.2f"%(n/i)) for i in locs]

66 ax1.set_yticks(locs, y_label_text)
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67 x_label = [1] + [i for i in range(10, n+1, 10)]

68 ax1.set_xticks(x_label, x_label)

69

70

71 plt.legend(loc="upper left")

72 plt.savefig('n' + str(n)+ '_inverse_a.png', dpi=300)

73

74 for n in range(MIN_N, MAX_N, N_STEP):

75 eps = INITIAL_EPS

76 ratio_inv = 0

77

78 shape = [rnd.random() for _ in range(n)]

79 S = sum(shape)

80 shape = [x/S for x in shape]

81 shape.sort(reverse=True)

82

83 for _ in range(EPOCHS):

84 for _ in range(BATCH_SIZE):

85 min_ratio = shape[0]

86 worst_pos = 0

87 prod = shape[0]

88 inv_ratios = [shape[0]]

89 for i in range(1, n):

90 prod *= shape[i]

91 ratio_act = prod/optimal(i+1)

92 if ratio_act < min_ratio:

93 min_ratio = ratio_act

94 worst_pos = i

95 inv_ratios.append(ratio_act)

96 ratio_inv = min_ratio

97 shape[worst_pos] += eps

98 shape = [x-eps/n for x in shape]

99 shape.sort(reverse=True)

100 eps /= DIV_EPS

101

102 ratios = [pow(1/x, 1/n) for x in inv_ratios]

103 printer(n, ratios, shape)

104
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105 print(n)

106 print("c:", math.pow(1/ratio_inv, 1/n))

107 flat_end = 0

108 for i in range(n-1):

109 if abs(1/shape[i]-1/shape[i+1]) < 0.5*math.e/n:

110 flat_end = i

111 print("flat end:", flat_end, flat_end/n)

112

113 inv_shape = [1/x for x in shape]

114

115 print("initial constant", n/inv_shape[0], "slope",

inv_shape[-1]-inv_shape[-2])↪→

116 print("\n")

117



B. Code 2

Program that creates and solves the linear system needed in the proof of Theorem 10. Check the

Theorem proof for more information.

1 import numpy as np

2 import math

3 from scipy.optimize import linprog

4 from matplotlib import pyplot as plt

5

6 MIN_N = 300

7 MAX_N = 1500

8 STEP_N = 300

9

10 for n in range(MIN_N, MAX_N, STEP_N):

11 obj = [0 for _ in range(n)]

12 # -1 because we are maxizing p1, see Theorem for more info

13 obj[0] = -1

14 mat = [[0 for _ in range(n)] for _ in range(n)]

15 for number_big_items in range(n):

16 for agents_with_alloc_items in range(1,n+1):

17 # if we allocated items to too few agents some agent

will be left↪→

18 # without items and the NSW will be 0

19 if agents_with_alloc_items+number_big_items < n:

20 mat[number_big_items][agents_with_alloc_items-1]

= 0↪→

21 continue

22 # we are only interested in the agents without a big

item↪→

23 used_agents = n-number_big_items

24 # all agents with allocated goods have at least one

good↪→

25 distributed_goods = n-agents_with_alloc_items

26 # base = how many items will at least receive the

agents without a big item↪→

27 base = (n-agents_with_alloc_items)//used_agents +1

65
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28 # but some will receive an extra item

29 extra = (n-agents_with_alloc_items) %

used_agents↪→

30 nsw = pow(base+1, extra) * pow(base,

used_agents-extra)↪→

31 nsw = pow(nsw, 1/n)

32 mat[number_big_items][agents_with_alloc_items-1] = nsw

33 best_nsw = [max(v) for v in mat]

34

35 # Restrictions on CR, see theorem proof.

36 # p_1 <= E[NSW(number of big items)]/max(NSW(number of big items)) for

all number of big items.↪→

37 lhs = [[1]+[0]*(n-1) for _ in range(n-1)]

38 for number_big_items in range(1,n):

39 for agents_with_alloc_items in range(1,n+1):

40 lhs[number_big_items-1][n-agents_with_alloc_items]

-=mat[number_big_items][agents_with_alloc_items-1]↪→

41 /best_nsw[number_big_items]

42 lhs_ineq = np.array(lhs)

43 rhs_ineq = [0 for _ in range(n-1)]

44

45 # sum of probabilities = 1

46 lhs_eq = [[1 for _ in range(n)]]

47 rhs_eq = [1]

48 # probabilities between 0 and 1

49 bnd = [(0, 1) for _ in range(n)]

50

51 opt = linprog(c=obj, A_ub=lhs_ineq, b_ub=rhs_ineq,

52 A_eq=lhs_eq, b_eq=rhs_eq, bounds=bnd,

53 method="revised simplex")

54 print(-1/opt["fun"])



C. Code 3

This is a simulator and competitive ratio calculator for the family of algorithms described in Section

3.5.2. The cond function has to be implemented for the desired algorithm within the family.

Running the program with option -h explains how to use it.

1 import argparse

2 from scipy.optimize import linprog

3 import math

4 import numpy.random as rand

5 import numpy as np

6 import matplotlib.pyplot as plt

7 import ast

8 import os

9

10 INFINITY = 1e9

11 EPS = 1e-7

12

13 parser = argparse.ArgumentParser()

14 parser.add_argument("--min_agents", default=2, type=int,

help="Minimum number of agents used.")↪→

15 parser.add_argument("--max_agents", default=2, type=int,

help="Maximum number of agents used.")↪→

16 parser.add_argument("--step_agents", default=1, type=int,

help="Stride of iterated agents.")↪→

17 parser.add_argument('--tight_cases', default=False, action='store_true',

help='Print the tight cases of the linear optimization.')↪→

18 parser.add_argument('--random_cases', default=0, type=int,

help='Number of random cases to generate.')↪→

19 parser.add_argument('--perms', default=1, type=int,

help='Number of permutations of each case.')↪→

20 parser.add_argument('--approximation', default=False, action='store_true',

help='Use an approximation for calculating difficult optimal values.')↪→

21 parser.add_argument('--generate', default=False, action='store_true',

help='Generate new cases and store them.')↪→

22 parser.add_argument('--file', default=None, type=str,

help='Path to file where store/read cases.')↪→
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23

24 rand.seed(42)

25

26 def main(args):

27 if args.generate:

28 if os.path.exists(args.file):

29 os.remove(args.file)

30 for num_agents in range(args.min_agents, args.max_agents+1,

args.step_agents):↪→

31 save_cases(num_agents, args.file, args)

32 print("generated cases for #agents = " + str(num_agents))

33

34 all_cases = None

35 if args.file is not None:

36 all_cases = read_cases(args.file)

37

38 max_cr = 0

39 crs = []

40 dists = []

41 greedy_crs = []

42 for num_agents in range(args.min_agents, args.max_agents+1,

args.step_agents):↪→

43 cases = None

44 opts = None

45 if all_cases is not None:

46 cases = all_cases[num_agents][0]

47 opts = all_cases[num_agents][1]

48 cr, dist, tight_cases, cr_greedy =

opt_dist_and_cr_of_base_cases(num_agents, cases, opts, args)↪→

49 crs.append(cr)

50 greedy_crs.append(cr_greedy)

51

52 dists.append((num_agents,dist))

53 max_cr = max(cr, max_cr)

54 print("num agents ", num_agents)

55 print("cr: ", cr)

56 print("max cr: ", max_cr)

57 print("cr greedy: ", cr_greedy)
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58 print("dist: ", dist)

59 if args.tight_cases:

60 print_tights(tight_cases)

61 print("-"*20)

62

63 print(crs)

64 print(greedy_crs)

65

66 def cond_function(s, b, n, D):

67 return None

68 def print_tights(tights):

69 print("TIGHT CASES")

70 for x in tights:

71 out = ""

72 for y in x:

73 out += "INF" if y >= INFINITY else str(int(y))

74 out += " "

75 print(out)

76

77 def iteration(item, agents, D):

78 B = agents[:D]

79 S = agents[D:]

80 b = sum(B)

81 s = sum(S)

82 n = len(agents)

83 if D == n or item >= cond_function(s, b, n, D):

84 agents[-1] += item

85 else:

86 agents[D-1] += item

87 agents.sort(reverse=True)

88 return agents

89

90 def nsw_corr_with_D(items, num_agents, D):

91 agents = [0 for _ in range(num_agents)]

92 for item in items:

93 agents = iteration(item, agents, D)

94 return nsw(agents)

95
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96 def nsw(agents):

97 mult = 1

98 for x in agents:

99 mult *= pow(x, 1/len(agents))

100 return mult

101

102 def opt_nsw_rec(items, agents, pos_items):

103 if pos_items == len(items):

104 return nsw(agents)

105 mx = 0

106 seen = set()

107 for i in range(len(agents)):

108 prev = agents[i]

109 if prev >= INFINITY or prev in seen:

110 continue

111 agents[i] += items[pos_items]

112 mx = max(mx, opt_nsw_rec(items, agents, pos_items+1))

113 agents[i] = prev

114 seen.add(prev)

115 return mx

116

117 def opt_nsw(items, num_agents):

118 items2 = list(items)

119 items2.sort(reverse=True)

120 return opt_nsw_rec(items, [0 for _ in range(num_agents)], 0)

121

122 def insert_perms(case, opt, cases, opts, perms):

123 for _ in range(perms):

124 cases.append(case)

125 opts.append(opt)

126 case = rand.permutation(case)

127

128 def generate_base_cases(num_agents, args=None):

129 all_cases = []

130 opt_values = []

131 for small in range(10*num_agents+1):

132 for big in range(num_agents+1):

133 if big+small < num_agents:
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134 continue

135

136 case = [1]*small + [INFINITY]*big

137 case2 = [INFINITY]*big+[1]*small

138

139 if big == num_agents:

140 insert_perms(case, INFINITY, all_cases, opt_values,

args.perms)↪→

141 insert_perms(case2, INFINITY, all_cases, opt_values,

args.perms)↪→

142 else:

143 extra_agents = num_agents-big

144 red_inf = pow(INFINITY, 1/num_agents)

145 base_items = small // extra_agents

146 base_plus_1_agents = small % extra_agents

147 base_agents = extra_agents-base_plus_1_agents

148 opt = pow(red_inf, big) * pow(base_items,

base_agents/num_agents) * pow(base_items+1,

base_plus_1_agents/num_agents)

↪→

↪→

149

150 insert_perms(case, opt, all_cases, opt_values, args.perms)

151 insert_perms(case2, opt, all_cases, opt_values, args.perms)

152

153 for small in range(num_agents+1):

154 for big in range(2,num_agents+1):

155 if big+small < num_agents:

156 continue

157 small_infinity = pow(INFINITY, 1/big)

158 bigs = [pow(small_infinity, i) for i in range(1, big+1)]

159 case = [1]*small + bigs

160 if big == num_agents:

161 bigs = [pow(x, 1/num_agents) for x in bigs]

162 opt = math.prod(bigs)

163 insert_perms(case, opt, all_cases, opt_values, args.perms)

164 else:

165 extra_agents = num_agents-big

166 base_items = small // extra_agents

167 base_plus_1_agents = small % extra_agents
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168 base_agents = extra_agents-base_plus_1_agents

169 bigs = [pow(x, 1/num_agents) for x in bigs]

170 opt = math.prod(bigs) * pow(base_items,

base_agents/num_agents) * pow(base_items+1,

base_plus_1_agents/num_agents)

↪→

↪→

171 insert_perms(case, opt, all_cases, opt_values, args.perms)

172

173 for small in range(0):

174 for big in range(num_agents):

175 if big+small < num_agents:

176 continue

177 case = [i for i in range(1, small+1)]+ [INFINITY]*big

178 opt_val = None

179 if args.approximation:

180 suma = small*(small+1)//2

181 opt_val = pow(suma/(num_agents-big),

(num_agents-big)/num_agents)*pow(INFINITY, big/num_agents)↪→

182 else:

183 opt_val = opt_nsw(case, num_agents)

184 insert_perms(case, opt_val, all_cases, opt_values, args.perms)

185

186 case = [small+1-i for i in range(1, small+1)]+ [INFINITY]*big

187 insert_perms(case, opt_val, all_cases, opt_values, args.perms)

188

189 for small in range(0):

190 for big in range(num_agents):

191 if big+small < num_agents:

192 continue

193 case = [2**i for i in range(0, small)]+ [INFINITY]*big

194 solos = num_agents-big-1

195 val_solos = [pow(2**i, 1/num_agents) for i in range(small-solos,

small)]↪→

196 opt_val = pow(INFINITY, big/num_agents) * math.prod(val_solos) *

pow(2**(small-solos)-1, 1/num_agents)↪→

197 insert_perms(case, opt_val, all_cases, opt_values, args.perms)

198

199 case = [2**(small-i) for i in range(0, small)]+ [INFINITY]*big

200 insert_perms(case, opt_val, all_cases, opt_values, args.perms)
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201

202 for small in range(num_agents+1):

203 for mid in range(num_agents+1):

204 for big in range(num_agents+1):

205 if big+small+mid < num_agents:

206 continue

207 if mid + big >= num_agents:

208 continue

209

210 extra_agents = num_agents-big-mid

211 red_inf = pow(INFINITY, 1/num_agents)

212 base_items = small // extra_agents

213 base_plus_1_agents = small % extra_agents

214 base_agents = extra_agents-base_plus_1_agents

215 case = [1]*small+[math.sqrt(INFINITY)]*mid + [INFINITY]*big

216 opt = pow(red_inf, big) * pow(math.sqrt(red_inf), mid) *

pow(base_items, base_agents/num_agents) *

pow(base_items+1, base_plus_1_agents/num_agents)

↪→

↪→

217 insert_perms(case, opt, all_cases, opt_values, args.perms)

218 case = [math.sqrt(INFINITY)]*mid + [1]*small+[INFINITY]*big

219 insert_perms(case, opt, all_cases, opt_values, args.perms)

220

221 for _ in range(args.random_cases):

222 length = rand.randint(num_agents, 2*num_agents)

223 case = [rand.random() for _ in range(length)]

224 opt_val = opt_nsw(case, num_agents)

225 insert_perms(case, opt_val, all_cases, opt_values, args.perms)

226

227

228 return all_cases, opt_values

229

230 def save_cases(n, file=None, args=None):

231 f = open(file, "a")

232 cases, opt_values = generate_base_cases(n, args)

233 opts = [opt if opt is not None else opt_nsw(case, num_agents) for (case,

opt) in zip(cases, opt_values)]↪→

234 cases = [list(x) for x in cases]

235 f.write(str(n))
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236 f.write("\n")

237 f.write(str(cases))

238 f.write("\n")

239 f.write(str(opts))

240 f.write("\n")

241 f.close()

242

243 def read_cases(file):

244 f = open(file, "r")

245 all_cases = {}

246 lines = f.readlines()

247 for (n, cases, opts) in zip(lines[0::3], lines[1::3], lines[2::3]):

248 n = int(n)

249 cases = ast.literal_eval(cases)

250 opts = ast.literal_eval(opts)

251 all_cases[n] = (cases, opts)

252 f.close()

253 return all_cases

254

255 def opt_dist_and_cr_of_base_cases(num_agents, cases=None, opts=None,

args=None):↪→

256 if cases == None:

257 cases, opt_values = generate_base_cases(num_agents, args)

258 opts = [opt if opt is not None else opt_nsw(case, num_agents) for

(case, opt) in zip(cases, opt_values)]↪→

259

260 nsw_to_dist = [[nsw_corr_with_D(case, num_agents, D) for D in

range(1,num_agents+1)] for case in cases]↪→

261 dist_cr = [[nsw/opt for nsw in nsws] for (opt, nsws) in zip(opts,

nsw_to_dist)]↪→

262

263 cr_greedy = 1

264 for x in dist_cr:

265 cr_greedy = min(cr_greedy, x[-1])

266 cr_greedy = 1/cr_greedy

267

268 lhs_ineq = [[-cr for cr in crs]+[1] for crs in dist_cr]

269 rhs_ineq = [0 for _ in range(len(lhs_ineq))]
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270

271 lhs_eq = [[1]*num_agents+[0]]

272 rhs_eq = [[1]]

273

274 obj = [[0]*num_agents+[-1]]

275 bnd = [(0, 1) for _ in range(num_agents+1)]

276

277 opt = linprog( c=obj,

278 A_ub=lhs_ineq, b_ub=rhs_ineq,

279 A_eq=lhs_eq, b_eq=rhs_eq,

280 bounds=bnd,

281 method="highs")

282

283 tight_cases = []

284 for (slack, case) in zip(opt["slack"], cases):

285 if abs(slack) < EPS:

286 tight_cases.append(case)

287

288 cr = -1/opt["fun"]

289 dist = opt["x"][:-1]

290 return cr, dist, tight_cases, cr_greedy

291

292

293 if __name__ == "__main__":

294 args = parser.parse_args([] if "__file__" not in globals() else None)

295 main(args)

296

297
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