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1. Nakayama’s lemma. Let M be a finitely generated A-module and I an ideal of A
contained in the Jacobson radical = ∩M , M maximal ideal. Prove: IM = M =⇒ M = 0.
Let {mi}I a minimal generatoring set of M . Given that IM = M we have that m1 =

∑
aimi for

certain ai ∈ I. Then m1(1 − a1) =
∑

i>1 aimi. Now if 1 − a1 is invertible we would have that m1

is a linear combination of the other elements of generating set, a contradiction with the minimality.
Indeed a+ 1 where a is in the Jacobson radical is invertible. First notice that if a+ 1 is in any of the
maximal ideals then 1+ a− a = 1 would also be what implies that the ideal would be the total. Then
(a+ 1) = I so exists an element λ s.t. λ(a+ 1) = 1 and we are finished.

2. Under the previous hypothesis, prove:
(i) A/I ⊗A M = 0 =⇒ M = 0
From problem 11 we know that A/I ⊗A M ≃ M/IM then we have that M/IM = 0 =⇒ M = IM
and by 1 we have M = 0.
(ii) If N ⊂ M is a submodule, M = IM +N =⇒ M = N .
We have that M/N = IM/N + N/N = IM/N + 0 = IM/N so (M/N) = I(M/N) and by 1

M/N = 0 =⇒ M = N .
(iii) If f : N → M is a homomorphism, f : N/IN → M/IM surjective =⇒ f surjective.
f(IN) ⊆ IM given that f(an) = af(n) where a is in the ideal and n ∈ N and f(n) ∈ M . Now
f(N/IN) = M/IM = f(N)/IM . So (f(N)−M)/IM = 0 =⇒ f(N)−M ⊆ IM =⇒ f(N) +M =
IM so by ii) (given that f(N) ⊆ M) f(N) = M and we are finished.

3. Let (A,m) be a local ring and M be a finitely generated A-module, x1, ..., xn elements
of M . Using Nakayama’s lemma prove that:
(i) x1, ..., xn generate M over A ⇐⇒ x1, ..., xn generate M/m over A/m.
First we have to notice that M/mM over A is isomorphic to M/mM over A/m. This is, multiplying
by a or by a is the same operation. If we take m ∈ M/mM we have to check that multiplying by
a ∈ A or by a+n with n ∈ m is the same. Indeed ma = m(a+n) ⇐⇒ ma−m(a+n) = 0 = −mn =
−nm ⇐⇒ nm ∈ mM that is true since n ∈ m
=⇒ indeed if we have x ∈ M/mM we know that x =

∑
aixi so x =

∑
aixi. Then every element of

mM can be expressed as a linear combination of x1, ..., xn and those are generators.
⇐= Since x1, ..., xn generate M/mM we have that any x ∈ M/mM can be expressed as x =∑

aixi ⇐⇒ x =
∑

aixi + n with n ∈ mM . From this we can say that M = ⟨x1, ..., xn⟩+mM . Now
since m is the only maximal ideal of A we can use 2 (ii) so ⟨x1, ..., xn⟩ = M and thus we have seen
that x1, ..., xn generate M .
(ii) x1, ..., xn is a minimal system of generators of M ⇐⇒ x1, ..., xn is a basis of the A/m-
vector space M/mM .
=⇒ Suppose that x1, ..., xn wasn’t a basis hence without losing generality we cap suppose that
x1, ..., xn−1 also generate M/mM . Then by (i) x1, ..., xn−1 would be generators of M contradicting
the minimality of x1, ..., xn.
⇐= Suppose that x1, ..., xn were not minimal hence without losing generality we cap suppose that
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x1, ..., xn−1 also generate M . Then by (i) x1, ..., xn−1 would be generators of M contradicting the
minimality (given by the fact that they are a basis of a vector space) of x1, ..., xn−1.
(iii) All minimal systems of generators of M have the same number of elements, equal to
the dimension of the A/m-vector space M/mM .
We have just seen that a minimal system of generator has to have the same number of elements of
a basis of M/mM . In a finite-dimension vectorial space (this one is because there exists a sistem of
generators of finite length) all basis have the same number of elements, the dimension of the vector
space.
(iv) x1, ..., xn are part of a minimal system of M ⇐⇒ x1, ..., xn are linearly independent in
M/mM .
=⇒ Extend x1, ..., xn to x1, ..., xn, xn+1, ..., xm the minimal system. Then x1, ..., xn, xn+1, ..., xm is a
basis and any subset of a basis has to be linearly independent. If it wasn’t the basis wouldn’t be linear
independent contradicting the fact that it is a basis.
⇐= Any set of linear independent vectors in a finite dimension vector space can be extended into
a basis. If x1, ..., xn, xn+1, ..., xm was the extension, x1, ..., xn, xn+1, ..., xm would be a minimal set of
generators so we are finished.

4. Let A be a non-local ring. Prove that the A-module A has two minimal systems of
generators with a different number of generators.
Obviously {1} is a minimal generator of cardinal 1. Let I, J two different maximal ideals and let
b ̸∈ I,∈ J and {a} ⊆ I minimal s.t. {a}∪{b} generates A. Indeed |{a}| ≥ 1 and {a}∪{b} is a minimal
generator of cardinal strictly greater than 1.

5. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of A-modules. Prove that if
M ′ and M ′′ are finitely generated, then M is finitely generated.
Let f : M ′ → M and g : M → M ′′ the functions of the short exact sequence. Let’s proof that if
{m′

i} is a finite set of generators of M ′ and {m′′
i } is a finite set of generators of M ′′ then the finite set

{f(m′
i)} ∪ {g−1(m′′

i )} is a finite set of generators of M . Note that g−1(x) denotes a single element s.t.
g(g−1(x)) = x, and there always exists one since g is exhaustive.
Let m ∈ M . Then g(m) =

∑
aim

′′
i , so m =

∑
aig

−1(m′′
i ) + k with k ∈ ker g. But indeed ker g = Im f

so k =
∑

bif(m
′
i). Thus we can express any element with the generators that we have taken and we

are finished.

6. Prove that Z[
√
d] is a Noetherian ring.

Z[
√
d] is a finitely generated Z-module and Z is Noetherian, thus Z[

√
d] is Noetherian.

7. Prove that the ring Z[2T, 2T 2, 2T 3, ...] ⊂ Z[T ] is not Noetherian.
Consider the chain {2zi}i≥1. We claim that the chain does not stabilize. If it stabilized we would

have 2zj =
∑j−1

i=1 ai2z
i, we need at least one term on the right side with exponent zj . If one ai2zi has

degree j we need that ai has degree j − i > 0, then it is of the form b2zj−i so 4|ai2zi. Then in the
right side we have that 4|ci if ci is the coefficient of zi and 4 ̸ |2 the coefficient in the left side, so it
does not stabilize.

8. Let M be an A-module and let N1, N2 be submodules of M . Prove that if M/N1 and
M/N2 are Noetherian (Artinian) then M/(N1 ∩N2) is Noetherian (Artinian) as well.
To start we need to apply the second theorem of isomorphism (that tells us that (S+T )/S ≃ S/(S∩T ))
to N1/(N1∩N2). It tells us that N1/(N1∩N2) ≃ (N1+N2)/(N2) ⊆ M/N2. Notice that a submodule of
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an Artinian (Noetherian) is Artinian (Noetherian). SinceM/N2 is Artinian (Noetherian), N1/(N1∩N2)
is Artinian (Noetherian).
Now let’s consider the following short exact sequence. 0 → N1/(N1∩N2) → M/(N1∩N2) → M/N1 →
0. Call the morphisms f, g and define f(m) = m (the inclusion) and g(m) = m. Note that the two
quotients of the definition of g are different. Let’s check then that the morphism is well defined. We
only need that m ∈ N1 ∩ N2 implies that g(m) = m ∈ N1, but it’s immediate since m is in the
intersection.
Let’s now check that this is indeed an exact short sequence. f is injective since is an inclusion. In the
other hand g is exhaustive since for all m ∈ M/N1 we have that g(m) = m. Finally we have to check
that Im f = ker g. The inclusion Im f ⊆ ker g is shown considering a m ∈ N1/(N1 ∩N2), that implies
m ∈ N1. Then g ◦ f(m) = m but since m ∈ N1, m = 0. In the other hand g(m) = m = 0 implies
m ∈ N1 so f(m) = m and we have that ker f ⊆ Im g.
We showed that N1/(N1 ∩N2) is Noetherian (Artinian) and by hypothesis M/N1 also is. Those two
modules form an exact short sequence with M/(N1 ∩ N2) so this last one has to be Noetherian (Ar-
tinian) and thus we are finished.

9. Let M be an A-module, f : M → M an A-endomorphism. Prove:
(i) If M is Noetherian and f surjective then f is an isomorphism.
We have that ker f ⊆ ker f2 ⊆ ... is an ascending chain. Given that M is Noetherian there exists n s.t.
ker fn = ker fm for all m ≥ n. Here we have that ker fn∩ Im fn = 0. Let’s see this. If m ∈ Im fn =⇒
∃r s.t fn(r) = m. Now if m ∈ ker fn =⇒ fn(m) = 0 = f2n(r) =⇒ fn(r) = 0 =⇒ m = 0. Now as
f is surjective we have that Im fn = M =⇒ ker fn = 0 =⇒ ker f = 0 =⇒ f is injective and in an
abelian category (as the modules) injective and surjective implies isomorphism.
(ii) If M is Artinian and f injective then f is an isomorphism.
We have that Im f ⊇ Im f2 ⊇ ... is a descending chain. M is Artinian so exists an n s.t. Im fn =
Im fn+1. Now for all elements m ∈ M we have fn(m) = r and exists an m′ s.t. fn+1(m′) = r (since
the image of fn and fn+1 is the same). Hence fn(m) = fn(f(m′)) and by injectivity we have that
f(m′) = m. Then f is exhaustive and since the modules is an abelian category f is an isomorphism.

10. Compute HomQ(Q,Z),HomZ(Q,Q),HomZ(Z/(m),Q).
Let’s show first that HomQ(Q,Z) = 0, in other words there exists no homomorphism between Q
and Z different than 0. Suppose that exists f s.t. f(a/b) = c ̸= 0, with a, b, c ∈ Z. Then
2cf(a/(2cb)) = f(2ac/(2cb) = f(a/b) = c, so f(a/(2cb)) = 1/2 that does not lie in Z, so the unique f
that can exists is 0.
In the other hand there exists other homomorphisms of Q into itself. But all of those are determined
by the image of 1. Let f(1) = a ∈ Q. Then we have that for all b ∈ Z, bf(1/b) = f(b/b)) = f(1) = a so
f(1/b) = a/b. Furthermore f(c/b) = f(1/b) + ...+ f(1/b) c times, then f(c/b) = ac/b. In other word
f(x) = ax. Then we have so many homomorphism as different images that f(1) can have. So we have
a homomorphism for each rational and if we denote fq the homomorphism that satfisfies fq(1) = q we
have that afq = faq and fq + fr = fq+r. So we have that HomZ(Q,Q) ≃ Q.
Again the only homomorphism that can exist between Z/(m) and Q is the 0 application. Suppose
that f(a) = b. Then f(am) = f(ma) = f(a) + ...+ a) = f(a) + ...+ f(a) = mf(a) = bm. In the other
hand am = 0 so f(am) = f(0) = 0. Then 0 = bm and we need that b = 0. This proves that f = 0 so
HomZ(Z/(m),Q) = 0.

11. Let A be a ring, M an A-module and I ⊆ A an ideal. Prove M/IM ≃ A/I ⊗A M .

Let’s consider first the exact short sequence 0 → I
f
↪−→ A

g−→ A/I → 0. Where f(a) = a and g(a) = a.
Indeed we have that ker f = 0, Im{f} = I = ker g and Im{g} = A/I so it’ a exact short sequence.
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Remember now that · ⊗A M is a right exact functor. Hence we have: I ⊗A M
f ′

↪−→ A ⊗A M
g′

−→
A/I ⊗A M → 0. Where now f ′(a⊗A b) = a⊗A b and g′(a⊗A b) = a⊗A b. Hence by the first theorem
of isomorphism we have that A/I ⊗A M ≃ A⊗A M/ ker g′. Notice that ker g′ = Im f ′ = I ⊗A M .

Now we note that every element a⊗Am of A⊗AM can be written as 1⊗Aam. Using this we can de-
fine a morphism h : (A⊗AM)/(I⊗AM) → M/IM , h(a⊗Am) = am. We can see that it has been well
defined. Indeed if we have an element in a⊗m ∈ I⊗AM we write it as 1⊗Aam so h(1⊗Aam) = am = 0.
Note that h(1⊗Am+1⊗Am′) = h(1⊗A (m+m′)) = m+m′ = h(1⊗Am)+h(1⊗Am′). So it’s a mor-
phism. More than that it’s exhaustive and injective. Hence A/I⊗AM ≃ (A⊗AM)/(I⊗AM) ≃ M/IM
as we wanted to see.

12. Let A be a ring and I, J ⊆ A ideals. Prove A/I ⊗A A/J ≃ A/(I + J).
From 11: A/I ⊗A A/J ≃ (A/J)/(I(A/J)). Now define a homomorphism f : A/J → A/(I + J),
f(x) = x. To be well defined we need to check that f(0) = 0 ⇐⇒ (x ∈ J =⇒ x ∈ I + J) what is
obviously true. Then we can try to apply the first theorem of isomorphism. The ker f = {x|f(x) =
0} ⇐⇒ {x|x ∈ I + J}. Notice that the x = i+ j, i ∈ I, j ∈ J . Let’s define x′ = x− j. We have that
x′ = x. More than that x′ = i ∈ I. From this ker f = I(A/J). Then we are finished.

13. Let A be a ring, M,N finitely generated A-modules. Prove:
(i) M ⊗A N is a finitely generated A-module.
Let {mi}I a finite number of generators of M and {nj}J a finite number of generators of N . Then
{mi, nj}I×J is finite and generates M⊗AN . Given m⊗An ∈ M⊗AN then m =

∑
aimi, n =

∑
bjnj .

Then m⊗A n = (
∑

aimi)⊗A (
∑

bjnj) =
∑

(aibjmi ⊗A nj).
(ii) If A is Noetherian, then HomA(M,N) is a finitely generated A-module.
Start noting that if {m1, ...,mr} is a system of generators of M a homomorphism f from M to
N is uniquely determined by {f(m1), ..., f(mr)}. Indeed if m =

∑
aimi then f(m) =

∑
aif(mi).

Then we have a homomorphism from h : HomA(M,N) → Nr. Given f ∈ HomA(M,N), h(f) =
(f(m1), ..., f(mr)). Indeed ah(f) = a(f(m1), ..., f(mr)) = (af(m1), ..., af(mr)) = h(af) and h(f +
g) = ((f + g)(m1), ..., (f + g)(mr)) = (f(m1), ..., f(mr)) + (g(m1), ..., g(mr)) = h(f) + h(g), so it’s a
homomorphism. The fact that those images uniquely determine f gives that h is injective. Thus by
the first theorem of isomorphism we have that HomA(M,N) ≃ h(HomA(M,N)) ⊆ Nr. So if we had
that any submodule of Nr was finitely generated we would be finished.
We will see this seeing that Nr is in fact Noetherian. We have that N is a finitely generated module
over A, a Noetherian ring, so it’s also Noetherian. Now Nr is also finitely generated over A so it is in
fact Noetherian. Since every submodule of a Noetherian module is finitely generated and HomA(M,N)
is a submodule HomA(M,N) is finitely generated.

14. Let A be a local ring, M,N finitely generated A-modules. Prove that M ⊗A N = 0
if and only if M = 0 or N = 0. Prove that the result is no longer true if the ring is not
local.
⇐= needs no further explanation.
=⇒ let’s use the same idea that we used in 3. Let m the maximal ideal of A-. Define f : M ⊗A N →
(M/mM)⊗(A/m) (N/mN), f(a⊗A b) = a⊗(A/m) b). We saw in 3. that changing the A for A/m once
we took modulo was okay. Now we have that (M/mM) ⊗(A/m) (N/mN) = 0. Notice that now the
components of the tensor product are finite dimension vector spaces. If the tensor product equals 0
one of the components has to equal 0. Without lose of generality we have M/mM = 0. We are in
position to use Nakayama’s lemma to say that we need M = 0 and thus we are finished.
For the seeing that the locality of the ring is needed take A with two different maximal ideals I and
J . Consider A/I ⊗A A/J . Indeed those are not 0. Now consider any element a ⊗A b ∈ A/I ⊗A A/J
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and i ∈ I, i ̸∈ J . Then for being A/J a field we have a i′ s.t. ii′ = 1 in A/J . So a⊗A b = a⊗A ii′b =
ia⊗A i′b = 0⊗A i′b = 0. Using that i ∈ I =⇒ ai ∈ I. Thus any element is equal to 0 so is the space.

15. Let M be a finitely generated A-module and let S ⊆ A be a multiplicatively closed
set. Prove that S−1M = 0 if and only if there exists s ∈ S such that sM = 0.
S−1M = 0 ⇐⇒ ∀m ∈ M, s ∈ S, (m/s ≡ 0/1 ⇐⇒ ∃s′ ∈ S s.t. s′(m) = 0) ⇐⇒ ∀m ∈ M∃s ∈ S s.t.
ms = 0.
Then for ⇐= we just have to take the s s.t. sM = 0 for all m.
For the reverse implication let {mi} be finite number of generators of M . Then by hypothesis for each
mi exists si ∈ S s.t. misi = 0. Consider s =

∏
si. Since S in multiplicatively closed s ∈ S. Know all

m ∈ M can me expressed m =
∑

aimi. Hence sm = s
∑

aimi =
∑

aismi =
∑

bisimi =
∑

0 = 0 so
we are finished.

16. Let S ⊆ A be a multiplicatively closed set. Prove that the localization functor S−1-
is exact.
Remember first that S−1(M) = {m

s |m ∈ M, s ∈ S}, with the relation m
a ∼ m′

a′ ⇐⇒ ∃t ∈ S s.t.

t(ma′ − m′a) = 0. Also if f : M → N , S−1(f) : S−1M → S−1N , S−1(f)(ma ) = f(m)
b . This is well

defined.
Let’s now see that if we have a exact short sequence 0 → M ′ → M → M ′′ → 0, with functions f and
g then S−1M ′ → S−1M → S−1M ′′, with functions f ′ := S−1(f)′ and g′ := S−1(g) is also exact.
Firstly we can see that exhaustivity and injectivity are preserved.

The ker f ′ = {m
a |f

′(ma ) = f(m)
a = 0}. But f(m)

a = 0 ⇐⇒ ∃t ∈ S s.t. t(f(m) − a · 0) = tf(m) =
f(tm) = 0. By injectivity of f then tm = 0 so m

a = 0 thus ker f ′ = 0 and f ′ is injective.

To see that g′ is exhaustive we have to find for all m
a ∈ M ′′ a m′

a′ ∈ M s.t. g′(m
′

a′ ) = m
a . But

g′(m
′

a′ ) = g(m′)
a′ . By exhaustivity of g we know that we can pick a m′ s.t. g(m′) = m and choosing

a′ = a we have that g′(m
′

a ) = m
a thus we are finished.

To end we have to check that Im{f ′} = ker g′, knowing that Im{f} = ker g. Let’s see that Im f ′ ⊆
ker g′ ⇐⇒ g′ ◦ f ′ = 0, g′ ◦ f ′(ma ) = g′( f(m)

a ) = g(f(m))
a , by hypothesis g ◦ f = 0 so g(f(m))

a = 0 and we
are finished.
We are only left to check that ker g′ ⊆ Im f ′. m

a ∈ ker g′ ⇐⇒ g′(ma ) =
g(m)
a = 0 ⇐⇒ ∃t ∈ S s.t.

tg(m) = g(tm) = 0. By the same condition between f and g there exists m′ ∈ M ′ s.t. f(m′) = tm.

Hence f ′(m
′

at ) = tm
at = m

a . Note that we used that S is closed under multiplication and the at ∈ S
because a, t ∈ S. Then ker g′ ⊆ Im f ′ and ker g′ = Im f ′ and we proved that the sequence under the
localization functor is still exact so the localization functor is exact.

17. Let M be an A-module. We say that it is simple if it doesn’t contain any non-trivial
submodule (i.e. if N ⊆ M is a submodule, then N = 0 or N = M). Prove:
(i) Every simple module is cyclic.
Consider a non-zero element m of M . Take the elements generated by it (m). It’s a submodule and
it’s not empty, then (m) = M and M is generated by m, so M is cyclic.
(ii) If M,N are simple A-modules and f : M → N is an homomomorphism, then f = 0 or
f is an isomorphism. Since the modules are an abelian cathegory for f being an isomorphism we
only need to check exhaustivity and injectivity. Consider first ker f . Since ker f is a submodule of M
we have two cases. If ker f = M then f = 0.
Assume the opposite, so ker f = 0 and f is injective. Now we have to check exhaustivity. We can not
say directly that Im f is a submodule on N since it is false in general.
Take a non-zero element of M , call it m. Now since ker f = 0 we know that f(m) is non-zero. By
(i) we know that (f(m)) = N . Indeed we also know that (m) = M . We just have to check that
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f((m)) = (f(m)). An element of (m) is of the form am with a ∈ A. An element of (f(m)) is of the
form af(m) with a ∈ A. But indeed af(m) = f(am) ∈ f((am)) hence f(M) = f((m)) = (f(m)) = N
and we are finished.

18. Let A be an integral domain and let M be an A-module. We say that m ∈ M is a
torsion element if there exists a ∈ A
{0} such that am = 0. Let T (M) be the set of torsion elements. Prove:
(i) T (M) is a submodule of M
We have to check that T (M) is closed under addition and multiplication by scalar. If we havem,n ∈ M
s.t ∃a, b ̸= 0 ∈ A with am = bn = 0 we have that ab(m+n) = b(am)+ a(bn) = b · 0+ a · 0 = 0+0 = 0.
Since A is a domain ab ̸= 0. And if c ∈ A we have that a(cm) = c(am) = c · 0 = 0 so it’s also closed
by multiplication by scalar.
(ii) M/T (M) has no torsion.
Let m ∈ T (M/T (M)). It follows that there exists a non-zero a ∈ A s.t. am = am = 0. This implies
that am ∈ T (m). Hence there exists a non-zero b ∈ A s.t. b(am) = 0 = (ab)m. Note that ab is
non-zero. Then m is in T (M) so m = 0 and the torsion of M/T (M) is 0.
(iii) If f : M → N is A-linear, then f(T (M)) ⊆ T (N).
Let m ∈ T (M), so there exists a non-zero a ∈ A s.t. am = 0. Then we have that af(m) = f(am) = 0
so f(m) ∈ T (N) and we are finished.
(iv) If 0 → M ′ → M → M ′′ → 0 is an exact sequence then 0 → T (M ′) → T (M) → T (M ′′) is
exact.
Let’s call f the function between M ′ and M and g the one between M and M ′′. Let f ′ and g′ the
restrictions of those functions to the torsions. From iii we know that are well defined.
The injectivity of f ′ follows from the injectivity of f . Then we only need to see that ker g′ = Im f ′.
The inclusion Im f ′ ⊆ ker g′ follows from the same condition between f and g.
We have to check now that ker g′ ⊆ Im f ′. Let m ∈ T (M) s.t. g′(m) = 0 = g(m). We know from
the short sequence condition between f and g that exists an n ∈ M ′ s.t. f(n) = m. We are left
to show that this n lives in T (M ′). Since m is in T (M) there exists a a ∈ A s.t. am = 0. Hence
af(n) = f(an) = am = 0. It follows that an ∈ ker f but ker f = 0 so an = 0 and n ∈ T (M ′) as we
wanted.
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