Abstract algebra season 2

Edgar Moreno

1. Nakayama’s lemma. Let M be a finitely generated A-module and [ an ideal of A
contained in the Jacobson radical = NM, M maximal ideal. Prove: IM = M — M =0.
Let {m;}; a minimal generatoring set of M. Given that IM = M we have that m; = >_ a;m; for
certain a; € I. Then mi(l —ay) = Zi>1 a;m;. Now if 1 — aq is invertible we would have that m;
is a linear combination of the other elements of generating set, a contradiction with the minimality.
Indeed a + 1 where a is in the Jacobson radical is invertible. First notice that if a + 1 is in any of the
maximal ideals then 1+ a — a = 1 would also be what implies that the ideal would be the total. Then
(a4 1) =1 so exists an element A s.t. A(a + 1) =1 and we are finished.

2. Under the previous hypothesis, prove:
(1) AJTeaM=0 = M=0
From problem 11 we know that A/T ® 4 M ~ M/IM then we have that M/IM =0 — M =1IM
and by 1 we have M = 0.
(ii) If N C M is a submodule, M =IM + N = M = N.
We have that M/N = IM/N + N/N = IM/N +0 = IM/N so (M/N) = I(M/N) and by 1
M/N =0 = M = N.
(iii) If f : N — M is a homomorphism, f: N/IN — M/IM surjective = f surjective.
f(IN) C IM given that f(an) = af(n) where a is in the ideal and n € N and f(n) € M. Now
Ff(N/IN)=M/IM = f(N)/IM. So (f(N) = M)/IM =0 = f(N)-M CIM = f(N)+ M =
IM so by ii) (given that f(N) C M) f(N) = M and we are finished.

3. Let (A, m) be a local ring and M be a finitely generated A-module, z1, ..., x, elements
of M. Using Nakayama’s lemma prove that:
(i) z1,...,z, generate M over A < T,...,T, generate M/m over A/m.
First we have to notice that M/mM over A is isomorphic to M/mM over A/m. This is, multiplying
by a or by @ is the same operation. If we take T € M/mM we have to check that multiplying by
a € A or by a+n with n € m is the same. Indeed ma = m(a+n) < ma—m(a+n)=0=—mn =
—nm <= nm € mM that is true since n € m
= indeed if we have T € M/mM we know that = > a;x; so T = Y a;T;. Then every element of
mM can be expressed as a linear combination of Zy, ..., T, and those are generators.
<= Since T1,...,T, generate M/mM we have that any T € M/mM can be expressed as T =
S a;T; <= x =) a;x; +n with n € mM. From this we can say that M = (21, ...,z,) + mM. Now
since m is the only maximal ideal of A we can use 2 (ii) so (z1,...,2,) = M and thus we have seen
that x4, ..., z, generate M.
(ii) x1,...,zn is a minimal system of generators of M <= T,...,T, is a basis of the A/m-
vector space M/mM.
—> Suppose that Zj,...,Z,, wasn’t a basis hence without losing generality we cap suppose that
T1,...,Tp—1 also generate M/mM. Then by (i) z1,...,x,—1 would be generators of M contradicting
the minimality of x4, ..., z,.
<= Suppose that zq,...,x, were not minimal hence without losing generality we cap suppose that



X1y ..., Tp—1 also generate M. Then by (i) Z7,...,T,—1 would be generators of M contradicting the
minimality (given by the fact that they are a basis of a vector space) of 71, ..., Tp—1.

(iii) All minimal systems of generators of M have the same number of elements, equal to
the dimension of the A/m-vector space M/mM.

We have just seen that a minimal system of generator has to have the same number of elements of
a basis of M/mM. In a finite-dimension vectorial space (this one is because there exists a sistem of
generators of finite length) all basis have the same number of elements, the dimension of the vector
space.

(iv) «1,...,z, are part of a minimal system of M <= =x1,...,z, are linearly independent in
M/mM.

= Extend z1,...,2, to T1,...,Tn, Tnt1, ..., Ty the minimal system. Then T1,...,Tn, Tpy1,...s Tm 18 @
basis and any subset of a basis has to be linearly independent. If it wasn’t the basis wouldn’t be linear
independent contradicting the fact that it is a basis.

<= Any set of linear independent vectors in a finite dimension vector space can be extended into
a basis. If 71,...,Tp, Tp1, -, T Was the extension, x1, ..., Tp, Tnt1, ..., Ty wWould be a minimal set of
generators so we are finished.

4. Let A be a non-local ring. Prove that the A-module A has two minimal systems of
generators with a different number of generators.
Obviously {1} is a minimal generator of cardinal 1. Let I,J two different maximal ideals and let
b¢ I,€ Jand {a} C I minimal s.t. {a}U{b} generates A. Indeed |{a}| > 1 and {a} U{b} is a minimal
generator of cardinal strictly greater than 1.

5. Let 0 - M’ - M — M"” — 0 be a short exact sequence of A-modules. Prove that if
M’ and M" are finitely generated, then M is finitely generated.
Let f: M — M and g : M — M" the functions of the short exact sequence. Let’s proof that if
{m}} is a finite set of generators of M’ and {m} '} is a finite set of generators of M" then the finite set
{f(mH)Yu{g=t(m!)} is a finite set of generators of M. Note that g~ (x) denotes a single element s.t.
g(g7(z)) = z, and there always exists one since g is exhaustive.
Let m € M. Then g(m) =Y a;mY, so m =3 a;g ' (m/) + k with k € ker g. But indeed ker g = Im f
so k = > b;f(m}). Thus we can express any element with the generators that we have taken and we
are finished.

6. Prove that Z[V/d] is a Noetherian ring.
Z[\/d] is a finitely generated Z-module and Z is Noetherian, thus Z[v/d] is Noetherian.

7. Prove that the ring Z[27,27?% 273, ...] C Z[T] is not Noetherian.
Consider the chain {22'};>;. We claim that the chain does not stabilize. If it stabilized we would
have 227 = Zf;ll a;2z%, we need at least one term on the right side with exponent z7. If one a;2z; has
degree j we need that a; has degree j — i > 0, then it is of the form b2277* so 4|a;2z;. Then in the
right side we have that 4|c; if ¢; is the coefficient of z; and 4 /2 the coefficient in the left side, so it
does not stabilize.

8. Let M be an A-module and let N7, N> be submodules of M. Prove that if M/N; and
M/N; are Noetherian (Artinian) then M/(N; N N3) is Noetherian (Artinian) as well.
To start we need to apply the second theorem of isomorphism (that tells us that (S+77)/S ~ S/(SNT))
to N1/(N1NN2). It tells us that Ny /(N1NN2) ~ (N1+Nz)/(N2) € M/N,. Notice that a submodule of



an Artinian (Noetherian) is Artinian (Noetherian). Since M /N3 is Artinian (Noetherian), N1 /(N1NNz)
is Artinian (Noetherian).

Now let’s consider the following short exact sequence. 0 — Ny /(N1 NNy) = M/(N;NNy) = M/N; —
0. Call the morphisms f, g and define f(7m) = ™ (the inclusion) and g(m) = m. Note that the two
quotients of the definition of g are different. Let’s check then that the morphism is well defined. We
only need that m € Ny N Ny implies that g(m) = m € Nj, but it’s immediate since m is in the
intersection.

Let’s now check that this is indeed an exact short sequence. f is injective since is an inclusion. In the
other hand g is exhaustive since for all m € M/N; we have that g(7) = m. Finally we have to check
that Im f = ker g. The inclusion Im f C ker g is shown considering a m € N1 /(N; N Ny), that implies
m € Ny. Then go f(m) = m but since m € Ny, m = 0. In the other hand g(m) = m = 0 implies
m € Ny so f(m) = m and we have that ker f C Im g.

We showed that N;/(Ny N N3) is Noetherian (Artinian) and by hypothesis M /N also is. Those two
modules form an exact short sequence with M/(N; N N3) so this last one has to be Noetherian (Ar-
tinian) and thus we are finished.

9. Let M be an A-module, f: M — M an A-endomorphism. Prove:
(i) If M is Noetherian and f surjective then f is an isomorphism.
We have that ker f C ker f2 C ... is an ascending chain. Given that M is Noetherian there exists n s.t.
ker f™ = ker f™ for all m > n. Here we have that ker f” NIm f™ = 0. Let’s see this. If m € Im f* =
JIr st f7(r) = m. Now if m € ker f* = f"(m)=0= f"(r) = f"(r)=0 = m = 0. Now as
f is surjective we have that Im f* = M = ker f" =0 = ker f =0 = f is injective and in an
abelian category (as the modules) injective and surjective implies isomorphism.
(ii) If M is Artinian and f injective then f is an isomorphism.
We have that Im f O Im f? D ... is a descending chain. M is Artinian so exists an n s.t. Im f" =
Im f**1. Now for all elements m € M we have f"(m) = r and exists an m’ s.t. f**1(m’) = r (since
the image of f® and f"*! is the same). Hence f"(m) = f"(f(m’)) and by injectivity we have that
f(m’) =m. Then f is exhaustive and since the modules is an abelian category f is an isomorphism.

10. Compute Homg(Q, Z), Homz(Q, Q), Homz(Z/(m), Q).
Let’s show first that Homg(Q,Z) = 0, in other words there exists no homomorphism between Q
and Z different than 0. Suppose that exists f s.t. f(a/b) = ¢ # 0, with a,b,c € Z. Then
2¢f(a/(2¢h)) = f(2ac/(2¢b) = f(a/b) = ¢, so f(a/(2¢b)) = 1/2 that does not lie in Z, so the unique f
that can exists is 0.
In the other hand there exists other homomorphisms of Q into itself. But all of those are determined
by the image of 1. Let f(1) = a € Q. Then we have that for all b € Z, bf(1/b) = f(b/b)) = f(1) = a so
f(1/b) = a/b. Furthermore f(c/b) = f(1/b) + ... + f(1/b) ¢ times, then f(c/b) = ac/b. In other word
f(z) = ax. Then we have so many homomorphism as different images that f(1) can have. So we have
a homomorphism for each rational and if we denote f; the homomorphism that satfisfies f,(1) = ¢ we
have that afy = foq and fy + fr = fg4r. So we have that Homz(Q, Q) ~ Q.
Again the only homomorphism that can exist between Z/(m) and Q is the 0 application. Suppose
that f(@) =b. Then f(am) = f(ma) = f(a)+ ... +a) = f(a) + ... + f(@) = mf(a) = bm. In the other
hand @m = 0 so f(am) = f(0) = 0. Then 0 = bm and we need that b = 0. This proves that f = 0 so
Homgz(Z/(m),Q) = 0.

11. Let A be a ring, M an A-module and 7 C A an ideal. Prove M/IM ~ A/I®4 M.

Let’s consider first the exact short sequence 0 — I EAYER A/I — 0. Where f(a) = a and g(a) = a.
Indeed we have that ker f = 0, Im{f} = I = kerg and Im{g} = A/I so it’ a exact short sequence.



Remember now that - ® 4 M is a right exact functor. Hence we have: I ® 4 M <i> Ao M L5
A/I®4 M — 0. Where now f'(a®4b) =a®4band ¢'(a®4b) =a®4b. Hence by the first theorem
of isomorphism we have that A/I ®4 M ~ A®4 M/kerg'. Notice that kerg’ =Im f' =T ®4 M.

Now we note that every element a® 4m of AR 4 M can be written as 1® 4am. Using this we can de-
fine a morphism h : (A®A M)/(I®@a M) — M/IM, h(a®am) = am. We can see that it has been well
defined. Indeed if we have an element in a®@m € IT® 4 M we write it as 1® 4am so h(1® 4am) = am = 0.
Note that h(1@am—+1@am') =h(1@4 (m+m')) =m+m' =h(1®am)+h(1®am'). So it’s a mor-
phism. More than that it’s exhaustive and injective. Hence A/I@a M ~ (AQaM)/(I@aM) ~ M/IM
as we wanted to see.

12. Let A be a ring and I,J C A ideals. Prove A/I®4 A/J ~ A/(I+J).
From 11: A/I ®4 A/J ~ (A/J)/(I(A/J)). Now define a homomorphism f : A/J — A/(I + J),
f(@) = 7. To be well defined we need to check that f(0) =0 <= (z € J = x € [+ J) what is
obviously true. Then we can try to apply the first theorem of isomorphism. The ker f = {Z|f(z) =
0} < {z|zr € I + J}. Notice that the x =i+ j,i € I,j € J. Let’s define 2’ = x — j. We have that
2/ = Z. More than that 2/ =i € I. From this ker f = I(A/.J). Then we are finished.

13. Let A be a ring, M, N finitely generated A-modules. Prove:
(i) M ®4 N is a finitely generated A-module.
Let {m;}; a finite number of generators of M and {n;}; a finite number of generators of N. Then
{mi,n;}rx s is finite and generates M ® 4 N. Given m®an € M @4 N then m =) a;m;, n =) b;n;.
Then m®@4an= (> a;m;) ®a (O bjn;) => (a;bjm; @®an;).
(ii) If A is Noetherian, then Homy4 (M, N) is a finitely generated A-module.
Start noting that if {m4,...,m,} is a system of generators of M a homomorphism f from M to
N is uniquely determined by {f(m1),..., f(m,)}. Indeed if m = > a;m; then f(m) = > a;f(m;).
Then we have a homomorphism from h : Homy (M, N) — N". Given f € Homu(M,N), h(f) =
(f(m1), . fms)). Indeed ah(f) = a(f(ma), . f(my)) = (af(mr),...af(me)) = haf) and h(f +
9) = ((F £ 9)m), o (f + 9)m2)) = (FOm1)s o f(ma)) + (1), - 9m0)) = B(F) + h(g), 50 it’s a
homomorphism. The fact that those images uniquely determine f gives that h is injective. Thus by
the first theorem of isomorphism we have that Hom4 (M, N) ~ h(Hom4 (M, N)) C N". So if we had
that any submodule of N” was finitely generated we would be finished.
We will see this seeing that N” is in fact Noetherian. We have that IV is a finitely generated module
over A, a Noetherian ring, so it’s also Noetherian. Now N” is also finitely generated over A so it is in
fact Noetherian. Since every submodule of a Noetherian module is finitely generated and Hom 4 (M, N)
is a submodule Hom 4 (M, N) is finitely generated.

14. Let A be a local ring, M, N finitely generated A-modules. Prove that M ®4 N =0
if and only if M =0 or N = 0. Prove that the result is no longer true if the ring is not
local.
<= needs no further explanation.
= let’s use the same idea that we used in 3. Let m the maximal ideal of A-. Define f: M @4 N —
(M/mM) ®(a/m) (N/mN), f(a®ab) =@ ®(a/m) b). We saw in 3. that changing the A for A/m once
we took modulo was okay. Now we have that (M/mM) ®(4/m) (IN/mN) = 0. Notice that now the
components of the tensor product are finite dimension vector spaces. If the tensor product equals 0
one of the components has to equal 0. Without lose of generality we have M/mM = 0. We are in
position to use Nakayama’s lemma to say that we need M = 0 and thus we are finished.

For the seeing that the locality of the ring is needed take A with two different maximal ideals I and
J. Consider A/I ®4 A/J. Indeed those are not 0. Now consider any element a®@4 b € A/I @4 A/J



and i € I,i ¢ J. Then for being A/J a field we have a 7’ s.t. W =1in A/J. So@a®ab=a®4ii'b=
ia®441'b=0®,41i'b=0. Using that i € I = ai € I. Thus any element is equal to 0 so is the space.

15. Let M be a finitely generated A-module and let S C A be a multiplicatively closed
set. Prove that S~'M = 0 if and only if there exists s € S such that sM = 0.

STIM =0 <= Vme M,s€S,(m/s=0/1 < 3s' € Ss.t. s'(m)=0) < Vm € M3s € S s.t.
ms = 0.

Then for <= we just have to take the s s.t. sM = 0 for all m.

For the reverse implication let {m;} be finite number of generators of M. Then by hypothesis for each
m; exists s; € S s.t. m;s; = 0. Consider s =[] s;. Since S in multiplicatively closed s € S. Know all
m € M can me expressed m = > a;m;. Hence sm = s> a;m; =Y a;sm; = > bisim; =».0=0so
we are finished.

16. Let S C A be a multiplicatively closed set. Prove that the localization functor S—'-
is exact.
Remember first that S™'(M) = {Z|m € M,s € S}, with the relation 2 ~ 2 <« 3t € S s.t.

t(ma’ —m'a) = 0. Alsoif f: M — N, S71(f) : S'M — S7'N, S71(f)(2) = L0 This is well
defined.

Let’s now see that if we have a exact short sequence 0 — M’ — M — M’ — 0, with functions f and
g then S7!M’" — S=1M — S=1M" with functions f’:= S~1(f)" and ¢’ := S~1(g) is also exact.
Firstly we can see that exhaustivity and injectivity are preserved.

The ker f' = {2|f/() = L) — 0} But fﬂ;”) =0 < 3teSst t(flm)—a-0)=tf(m) =
f(tm) = 0. By injectivity of f then tm = 0 so ™ = 0 thus ker f’ = 0 and f’ is injective.

To see that ¢’ is exhaustive we have to find for all ™ € M" a moe M st g(%) = =, But

a’ a’
g'(’:—,/) = g(;rf ). By exhaustivity of g we know that we can pick a m’ s.t. g(m') = m and choosing

a’ = a we have that g’(%/) = ™ thus we are finished.

To end we have to check that Im{f’} = ker¢’, knowing that Im{f} = kerg. Let’s see that Im f’ C
kerg' <= g'of' =0,9 o f'(%) :g’(@) = W, by hypothesis go f = 0 so W =0 and we
are finished.

We are only left to check that kerg’ C Im f'. ™ € kerg’ <= ¢'() = g( ) =0 < 3JtesSst.
tg(m) = g(tm) = 0. By the same condition between f and g there exists m' € M’ s.t. f(m') =tm.
Hence f’ (E) = Im — ™ Note that we used that S is closed under multiplication and the at € S
because a,t € S. Then ker g’ C Im f’ and ker ¢’ = Im f’ and we proved that the sequence under the
localization functor is still exact so the localization functor is exact.

17. Let M be an A-module. We say that it is simple if it doesn’t contain any non-trivial
submodule (i.e. if N C M is a submodule, then N =0 or N = M). Prove:

(i) Every simple module is cyclic.

Consider a non-zero element m of M. Take the elements generated by it (m). It’s a submodule and
it’s not empty, then (m) = M and M is generated by m, so M is cyclic.

(ii) If M, N are simple A-modules and f: M — N is an homomomorphism, then f =0 or
f is an isomorphism. Since the modules are an abelian cathegory for f being an isomorphism we
only need to check exhaustivity and injectivity. Consider first ker f. Since ker f is a submodule of M
we have two cases. If ker f = M then f = 0.

Assume the opposite, so ker f = 0 and f is injective. Now we have to check exhaustivity. We can not
say directly that Im f is a submodule on N since it is false in general.

Take a non-zero element of M, call it m. Now since ker f = 0 we know that f(m) is non-zero. By
(i) we know that (f(m)) = N. Indeed we also know that (m) = M. We just have to check that



f((m)) = (f(m)). An element of (m) is of the form am with a € A. An element of (f(m)) is of the
form af(m) with a € A. But indeed af(m) = f(am) € f((am)) hence f(M) = f((m)) = (f(m)) =
and we are finished.

18. Let A be an integral domain and let M be an A-module. We say that m € M is a
torsion element if there exists a € A
{0} such that am = 0. Let T(M) be the set of torsion elements. Prove:
(i) T(M) is a submodule of M
We have to check that T'(M) is closed under addition and multiplication by scalar. If we have m,n € M
s.t Ja,b # 0 € A with am = bn = 0 we have that ab(m +n) = blam) +a(bn) =b-04+a-0=0+0 = 0.
Since A is a domain ab # 0. And if ¢ € A we have that a(cm) = ¢(am) = ¢-0 = 0 so it’s also closed
by multiplication by scalar.
(ii) M/T(M) has no torsion.
Let m € T(M/T(M)). Tt follows that there exists a non-zero a € A s.t. am = am = 0. This implies
that am € T(m). Hence there exists a non-zero b € A s.t. b(am) = 0 = (ab)m. Note that ab is
non-zero. Then m is in T'(M) so m = 0 and the torsion of M/T(M) is 0.
(iii) If f : M — N is A-linear, then f(T(M)) C T(N).
Let m € T(M), so there exists a non-zero a € A s.t. am = 0. Then we have that af(m) = f(am) =0
so f(m) € T(N) and we are finished.
(iv) If0 - M' - M — M"” — 0 is an exact sequence then 0 — T'(M') — T(M) — T(M") is
exact.
Let’s call f the function between M’ and M and ¢ the one between M and M”. Let f' and ¢’ the
restrictions of those functions to the torsions. From iii we know that are well defined.
The injectivity of f’ follows from the injectivity of f. Then we only need to see that ker ¢’ = Im f”.
The inclusion Im f” C ker ¢’ follows from the same condition between f and g.
We have to check now that kerg’ C Im f’. Let m € T(M) s.t. ¢'(m) = 0 = g(m). We know from
the short sequence condition between f and g that exists an n € M’ s.t. f(n) = m. We are left
to show that this n lives in T'(M’). Since m is in T'(M) there exists a a € A s.t. am = 0. Hence
af(n) = f(an) = am = 0. It follows that an € ker f but ker f = 0 so an = 0 and n € T(M’) as we
wanted.



